ﻻ يوجد ملخص باللغة العربية
During the interaction of intense femtosecond laser pulses with various targets, the natural mechanisms of laser energy transformation inherently lack temporal control and thus commonly do not provide opportunities for a controlled generation of a well-collimated, high-charge beam of ions with a given energy of particular interest. In an effort to alleviate this problem, it was recently proposed that the ions can be dragged by an electron bunch trapped in a controllably moving potential well formed by laser radiation. Such standing-wave acceleration (SWA) can be achieved through reflection of a chirped laser pulse from a mirror, which has been formulated as the concept of chirped-standing-wave acceleration (CSWA). Here we analyze general feasibility aspects of the SWA approach and demonstrate its reasonable robustness against field structure imperfections, such as those caused by misalignment, ellipticity and limited contrast. Using this we also identify prospects and limitations of the CSWA concept.
We report on the experimental studies of laser driven ion acceleration from double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer thin diamond-like carbon foil. A significant enhancemen
The acceleration of ions from ultra-thin foils has been investigated using 250 TW, sub-ps laser pulses, focused on target at intensities up to $3times10^{20} Wcm2$. The ion spectra show the appearance of narrow band features for proton and Carbon pea
We present experimental studies on ion acceleration from ultra-thin diamond-like carbon (DLC) foils irradiated by ultra-high contrast laser pulses of energy 0.7 J focussed to peak intensities of 5*10^{19} W/cm^2. A reduction in electron heating is ob
Scaling laws of ion acceleration in ultrathin foils driven by radiation pressure of intense laser pulses are investigated by theoretical analysis and two-dimensional particle-in-cell simulations. Considering the instabilities are inevitable during la
Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the potential for a number of foreseen applications and in the perspective to investigate novel regimes as fa