ترغب بنشر مسار تعليمي؟ اضغط هنا

A k-linear triangulated category without a model

94   0   0.0 ( 0 )
 نشر من قبل Michel Van den Bergh
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we give an example of a triangulated category, linear over a field of characteristic zero, which does not carry a DG-enhancement. The only previous examples of triangulated categories without a model have been constructed by Muro, Schwede and Strickland. These examples are however not linear over a field.



قيم البحث

اقرأ أيضاً

75 - Benjamin Antieau 2018
We study the problem of when triangulated categories admit unique infinity-categorical enhancements. Our results use Luries theory of prestable infinity-categories to give conceptual proofs of, and in many cases strengthen, previous work on the subje ct by Lunts--Orlov and Canonaco--Stellari. We also give a wide range of examples involving quasi-coherent sheaves, categories of almost modules, and local cohomology to illustrate the theory of prestable infinity-categories. Finally, we propose a theory of stable $n$-categories which would interpolate between triangulated categories and stable infinity-categories.
Starting with a k-linear or DG category admitting a (homotopy) Serre functor, we construct a k-linear or DG 2-category categorifying the Heisenberg algebra of the numerical K-group of the original category. We also define a 2-categorical analogue of the Fock space representation of the Heisenberg algebra. Our construction generalises and unifies various categorical Heisenberg algebra actions appearing in the literature. In particular, we give a full categorical enhancement of the action on derived categories of symmetric quotient stacks introduced by Krug, which itself categorifies a Heisenberg algebra action proposed by Grojnowski.
292 - Amnon Yekutieli 2016
In this short paper we outline (mostly without proofs) our new approach to the derived category of sheaves of commutative DG rings. The proofs will appear in a subsequent paper. Among other things, we explain how to form the derived intersection of two closed subschemes inside a given algebraic scheme X, without recourse to simplicial or higher homotopical methods, and without any global assumptions on X.
We study a categorical construction called the cobordism category, which associates to each Waldhausen category a simplicial category of cospans. We prove that this construction is homotopy equivalent to Waldhausens $S_{bullet}$-construction and ther efore it defines a model for Waldhausen $K$-theory. As an example, we discuss this model for $A$-theory and show that the cobordism category of homotopy finite spaces has the homotopy type of Waldhausens $A(*)$. We also review the canonical map from the cobordism category of manifolds to $A$-theory from this viewpoint.
114 - Qingyuan Jiang 2018
In this note, we generalize the linear duality between vector subbundles (or equivalently quotient bundles) of dual vector bundles to coherent quotients $V twoheadrightarrow mathscr{L}$ considered in arXiv:1811.12525, in the framework of Kuznetsovs h omological projective duality (HPD). As an application, we obtain a generalized version of the fundamental theorem of HPD for the $mathbb{P}(mathscr{L})$-sections and the respective dual sections of a given HPD pair.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا