ترغب بنشر مسار تعليمي؟ اضغط هنا

An Overview of Machine Teaching

67   0   0.0 ( 0 )
 نشر من قبل Xiaojin Zhu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we try to organize machine teaching as a coherent set of ideas. Each idea is presented as varying along a dimension. The collection of dimensions then form the problem space of machine teaching, such that existing teaching problems can be characterized in this space. We hope this organization allows us to gain deeper understanding of individual teaching problems, discover connections among them, and identify gaps in the field.



قيم البحث

اقرأ أيضاً

Machine teaching is an inverse problem of machine learning that aims at steering the student learner towards its target hypothesis, in which the teacher has already known the students learning parameters. Previous studies on machine teaching focused on balancing the teaching risk and cost to find those best teaching examples deriving the student model. This optimization solver is in general ineffective when the student learner does not disclose any cue of the learning parameters. To supervise such a teaching scenario, this paper presents a distribution matching-based machine teaching strategy. Specifically, this strategy backwardly and iteratively performs the halving operation on the teaching cost to find a desired teaching set. Technically, our strategy can be expressed as a cost-controlled optimization process that finds the optimal teaching examples without further exploring in the parameter distribution of the student learner. Then, given any a limited teaching cost, the training examples will be closed-form. Theoretical analysis and experiment results demonstrate this strategy.
115 - Mingzhe Yang , Yukino Baba 2020
Iterative machine teaching is a method for selecting an optimal teaching example that enables a student to efficiently learn a target concept at each iteration. Existing studies on iterative machine teaching are based on supervised machine learning a nd assume that there are teachers who know the true answers of all teaching examples. In this study, we consider an unsupervised case where such teachers do not exist; that is, we cannot access the true answer of any teaching example. Students are given a teaching example at each iteration, but there is no guarantee if the corresponding label is correct. Recent studies on crowdsourcing have developed methods for estimating the true answers from crowdsourcing responses. In this study, we apply these to iterative machine teaching for estimating the true labels of teaching examples along with student models that are used for teaching. Our method supports the collaborative learning of students without teachers. The experimental results show that the teaching performance of our method is particularly effective for low-level students in particular.
Successful teaching requires an assumption of how the learner learns - how the learner uses experiences from the world to update their internal states. We investigate what expectations people have about a learner when they teach them in an online man ner using rewards and punishment. We focus on a common reinforcement learning method, Q-learning, and examine what assumptions people have using a behavioral experiment. To do so, we first establish a normative standard, by formulating the problem as a machine teaching optimization problem. To solve the machine teaching optimization problem, we use a deep learning approximation method which simulates learners in the environment and learns to predict how feedback affects the learners internal states. What do people assume about a learners learning and discount rates when they teach them an idealized exploration-exploitation task? In a behavioral experiment, we find that people can teach the task to Q-learners in a relatively efficient and effective manner when the learner uses a small value for its discounting rate and a large value for its learning rate. However, they still are suboptimal. We also find that providing people with real-time updates of how possible feedback would affect the Q-learners internal states weakly helps them teach. Our results reveal how people teach using evaluative feedback and provide guidance for how engineers should design machine agents in a manner that is intuitive for people.
Learning to read words aloud is a major step towards becoming a reader. Many children struggle with the task because of the inconsistencies of English spelling-sound correspondences. Curricula vary enormously in how these patterns are taught. Childre n are nonetheless expected to master the system in limited time (by grade 4). We used a cognitively interesting neural network architecture to examine whether the sequence of learning trials could be structured to facilitate learning. This is a hard combinatorial optimization problem even for a modest number of learning trials (e.g., 10K). We show how this sequence optimization problem can be posed as optimizing over a time varying distribution i.e., defining probability distributions over words at different steps in training. We then use stochastic gradient descent to find an optimal time-varying distribution and a corresponding optimal training sequence. We observed significant improvement on generalization accuracy compared to baseline conditions (random sequences; sequences biased by word frequency). These findings suggest an approach to improving learning outcomes in domains where performance depends on ability to generalize beyond limited training experience.
Wireless Mesh Networks (WMNs) have been extensively studied for nearly two decades as one of the most promising candidates expected to power the high bandwidth, high coverage wireless networks of the future. However, consumer demand for such networks has only recently caught up, rendering efforts at optimizing WMNs to support high capacities and offer high QoS, while being secure and fault tolerant, more important than ever. To this end, a recent trend has been the application of Machine Learning (ML) to solve various design and management tasks related to WMNs. In this work, we discuss key ML techniques and analyze how past efforts have applied them in WMNs, while noting some existing issues and suggesting potential solutions. We also provide directions on how ML could advance future research and examine recent developments in the field.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا