ترغب بنشر مسار تعليمي؟ اضغط هنا

Avoiding apparent signaling in Bell tests for quantitative applications

289   0   0.0 ( 0 )
 نشر من قبل Matthias Kleinmann
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bell tests have become a powerful tool for quantifying security, randomness, entanglement, and many other properties, as well as for investigating fundamental physical limits. In all these cases, the specific experimental value of the Bell parameter is important as it leads to a quantitative conclusion. However, most experimental implementations aiming for high values of the Bell parameter suffer from the defect of showing signaling. This signaling can be attributed to systematic errors occurring due to weaknesses in the experimental designs. Here we point out the importance, for quantitative applications, to identify and address this problem. We present a set of experiments with polarization-entangled photons in which we point out common sources of systematic errors and demonstrate approaches to avoid them. This allows us to establish a reliable estimate for the Bell parameter.



قيم البحث

اقرأ أيضاً

We describe a procedure to create entangled history states and measurements that would enable one to check for temporal entanglement. The checks take the form of inequalities among observable quantities. They are similar in spirit, but different in detail, to Bell tests for ordinary entanglement.
The non-local correlations exhibited when measuring entangled particles can be used to certify the presence of genuine randomness in Bell experiments. While non-locality is necessary for randomness certification, it is unclear when and why non-locali ty certifies maximal randomness. We provide here a simple argument to certify the presence of maximal local and global randomness based on symmetries of a Bell inequality and the existence of a unique quantum probability distribution that maximally violates it. Using our findings, we prove the existence of N-party Bell test attaining maximal global randomness, that is, where a combination of measurements by each party provides N perfect random bits.
Incompatibility of observables, or measurements, is one of the key features of quantum mechanics, related, among other concepts, to Heisenbergs uncertainty relations and Bell nonlocality. In this manuscript we show, however, that even though incompat ible measurements are necessary for the violation of any Bell inequality, some relevant Bell-like inequalities may be obtained if compatibility relations are assumed between the local measurements of one (or more) of the parties. Hence, compatibility of measurements is not necessarily a drawback and may, however, be useful for the detection of Bell nonlocality and device-independent certification of entanglement.
Bell inequalities are mathematical constructs that demarcate the boundary between quantum and classical physics. A new class of multiplicative Bell inequalities originating from a volume maximization game (based on products of correlators within bipa rtite systems) has been recently proposed. For these new Bell parameters, it is relatively easy to find the classical and quantum, i.e. Tsirelson, limits. Here, we experimentally test the Tsirelson bounds of these inequalities using polarisation-entangled photons for different number of measurements ($n$), each party can perform. For $n=2, 3, 4$, we report the experimental violation of local hidden variable theories. In addition, we experimentally compare the results with the parameters obtained from a fully deterministic strategy, and observe the conjectured nature of the ratio. Finally, utilizing the principle of relativistic independence encapsulating the locality of uncertainty relations, we theoretically derive and experimentally test new richer bounds for both the multiplicative and the additive Bell parameters for $n=2$. Our findings strengthen the correspondence between local and nonlocal correlations, and may pave the way for empirical tests of quantum mechanical bounds with inefficient detection systems.
We apply a distance-based Bell-test analysis method [E. Knill et al., Phys. Rev. A. 91, 032105 (2015)] to three experimental data sets where conventional analyses failed or required additional assumptions. The first is produced from a new classical s ource exploiting a coincidence-time loophole for which standard analysis falsely shows a Bell violation. The second is from a source previously shown to violate a Bell inequality; the distance-based analysis agrees with the previous results but with fewer assumptions. The third data set does not show a violation with standard analysis despite the high source quality, but is shown to have a strong violation with the distance-based analysis method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا