ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical control of carrier wavefunction in magnetic quantum dots

83   0   0.0 ( 0 )
 نشر من قبل James Pientka
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spatially indirect Type-II band alignment in magnetically-doped quantum dot (QD) structures provides unexplored opportunities to control the magnetic interaction between carrier wavefunction in the QD and magnetic impurities. Unlike the extensively studied, spatially direct, QDs with Type-I band alignment where both electrons and holes are confined in the QD, in ZnTe QDs embedded in a (Zn,Mn)Se matrix only the holes are confined in the QDs. Photoexcitation with photon energy 3.06 eV (2.54 eV) generates electron-hole pairs predominantly in the (Zn,Mn)Se matrix (ZnTe QDs). The photoluminescence (PL) at 7 K in the presence of an external magnetic field exhibits an up to three-fold increase in the saturation red shift with the 2.54 eV excitation compared to the shift observed with 3.06 eV excitation. This unexpected result is attributed to multiple hole occupancy of the QD and the resulting increased penetration of the hole wavefunction tail further into the (Zn,Mn)Se matrix. The proposed model is supported by microscopic calculations which accurately include the role of hole-hole Coulomb interactions as well as the hole-Mn spin exchange interactions.



قيم البحث

اقرأ أيضاً

We image the micro-electroluminescence (EL) spectra of self-assembled InAs quantum dots (QDs) embedded in the intrinsic region of a GaAs p-i-n diode and demonstrate optical detection of resonant carrier injection into a single QD. Resonant tunneling of electrons and holes into the QDs at bias voltages below the flat-band condition leads to sharp EL lines characteristic of individual QDs, accompanied by a spatial fragmentation of the surface EL emission into small and discrete light- emitting areas, each with its own spectral fingerprint and Stark shift. We explain this behavior in terms of Coulomb interaction effects and the selective excitation of a small number of QDs within the ensemble due to preferential resonant tunneling paths for carriers.
It has been theoretically predicted that light carrying orbital angular momentum, or twisted light, can be tuned to have a strong magnetic-field component at optical frequencies. We here consider the interaction of these peculiar fields with a semico nductor quantum dot and show that the magnetic interaction results in new types of optical transitions. In particular, a single pulse of such twisted light can drive light-hole-to-conduction band transitions that are cumbersome to produce using conventional Gaussian beams or even twisted light with dominant electric fields.
In the present theoretical work we have considered impurities, either boron or phosphorous, located at different substitutional sites in silicon quantum dots (Si-QDs) with diameters around 1.5,nm, embedded in a SiO2 matrix. Formation energy calculati ons reveal that the most energetically-favored doping sites are inside the QD and at the Si/SiO2 interface for P and B impurities, respectively. Furthermore, electron and hole transport calculations show in all the cases a strong reduction of the minimum voltage threshold, and a corresponding increase of the total current in the low-voltage regime. At higher voltage, our findings indicate a significant increase of transport only for P-doped Si-QDs, while the electrical response of B-doped ones does not stray from the undoped case. These findings are of support for the employment of doped Si-QDs in a wide range of applications, such as Si-based photonics or photovoltaic solar cells.
Photoluminescence (PL) intermittency is a ubiquitous phenomenon detrimentally reducing the temporal emission intensity stability of single colloidal quantum dots (CQDs) and the emission quantum yield of their ensembles. Despite efforts for blinking r eduction via chemical engineering of the QD architecture and its environment, blinking still poses barriers to the application of QDs, particularly in single-particle tracking in biology or in single-photon sources. Here, we demonstrate the first deterministic all-optical suppression of quantum dot blinking using a compound technique of visible and mid-infrared (MIR) excitation. We show that moderate-field ultrafast MIR pulses (5.5 $mu$m, 150 fs) can switch the emission from a charged, low quantum yield grey trion state to the bright exciton state in CdSe/CdS core-shell quantum dots resulting in a significant reduction of the QD intensity flicker. Quantum-tunneling simulations suggest that the MIR fields remove the excess charge from trions with reduced emission quantum yield to restore higher brightness exciton emission. Our approach can be integrated with existing single-particle tracking or super-resolution microscopy techniques without any modification to the sample and translates to other emitters presenting charging-induced PL intermittencies, such as single-photon emissive defects in diamond and two-dimensional materials.
With the aim of improving solar cell efficiency, a structure for realizing electron tunneling from In0.6Al0.4As quantum dots (QDs) through an Al0.4Ga0.6As barrier to AlAs has been grown using molecular beam epitaxy. The photoluminescence decay time d ecreased from 1.1 ns to 390 ps as the barrier thickness decreased from 4 to 2 nm, which indicates that the photo-excited carriers tunneled from the QDs to the AlAs X energy level for a barrier thickness 2 nm in 0.6 ns, which is significantly longer than the tunneling time of GaAs and InAlAs quantum wells. We expect that this structure will assist in developing high-efficiency QD sensitized solar cells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا