ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially resolving the dust properties and submillimetre excess in M 33

256   0   0.0 ( 0 )
 نشر من قبل Monica Relano
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relative abundance of the dust grain types in the interstellar medium (ISM) is directly linked to physical quantities that trace the evolution of galaxies. We study the dust properties of the whole disc of M33 at spatial scales of ~170 pc. This analysis allows us to infer how the relative dust grain abundance changes with the conditions of the ISM, study the existence of a submillimetre excess and look for trends of the gas-to-dust mass ratio (GDR) with other physical properties of the galaxy. For each pixel in the disc of M33 we fit the infrared SED using a physically motivated dust model that assumes an emissivity index beta close to 2. We derive the relative amount of the different dust grains in the model, the total dust mass, and the strength of the interstellar radiation field (ISRF) heating the dust at each spatial location. The relative abundance of very small grains tends to increase, and for big grains to decrease, at high values of Halpha luminosity. This shows that the dust grains are modified inside the star-forming regions, in agreement with a theoretical framework of dust evolution under different physical conditions. The radial dependence of the GDR is consistent with the shallow metallicity gradient observed in this galaxy. The strength of the ISRF derived in our model correlates with the star formation rate in the galaxy in a pixel by pixel basis. Although this is expected it is the first time that a correlation between both quantities is reported. We produce a map of submillimetre excess in the 500 microns SPIRE band for the disc of M33. The excess can be as high as 50% and increases at large galactocentric distances. We further study the relation of the excess with other physical properties of the galaxy and find that the excess is prominent in zones of diffuse ISM outside the main star-forming regions, where the molecular gas and dust surface density are low.



قيم البحث

اقرأ أيضاً

The sample of 566 molecular clouds identified in the CO(2--1) IRAM survey covering the disk of M~33 is explored in detail.The clouds were found using CPROPS and were subsequently catalogued in terms of their star-forming properties as non-star-formin g (A), with embedded star formation (B), or with exposed star formation C.We find that the size-linewidth relation among the M~33 clouds is quite weak but, when comparing with clouds in other nearby galaxies, the linewidth scales with average metallicity.The linewidth and particularly the line brightness decrease with galactocentric distance.The large number of clouds makes it possible to calculate well-sampled cloud mass spectra and mass spectra of subsamples.As noted earlier, but considerably better defined here, the mass spectrum steepens (i.e. higher fraction of small clouds) with galactocentric distance.A new finding is that the mass spectrum of A clouds is much steeper than that of the star-forming clouds.Further dividing the sample, this difference is strong at both large and small galactocentric distances and the A vs C difference is a stronger effect than the inner/outer disk difference in mass spectra.Velocity gradients are identified in the clouds using standard techniques.The gradients are weak and are dominated by prograde rotation; the effect is stronger for the high signal-to-noise clouds.A discussion of the uncertainties is presented.The angular momenta are low but compatible with at least some simulations.The cloud and galactic gradients are similar; the cloud rotation periods are much longer than cloud lifetimes and comparable to the galactic rotation period.The rotational kinetic energy is 1-2% of the gravitational potential energy and the cloud edge velocity is well below the escape velocity, such that cloud-scale rotation probably has little influence on the evolution of molecular clouds.
The collisional and sticking properties of sub-mm-sized aggregates composed of protoplanetary dust analogue material are measured, including the statistical threshold velocity between sticking and bouncing, their surface energy and tensile strength w ithin aggregate clusters. We performed an experiment on the REXUS 12 suborbital rocket. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO2 particles prepared into aggregates with sizes around 120 $mu$m and 330 $mu$m, respectively and volume filling factors around 0.37. During the experimental run of 150 s under reduced gravity conditions, the sticking of aggregates and the formation and fragmentation of clusters of up to a few millimetres in size was observed. The sticking probability of the sub-mm-sized dust aggregates could be derived for velocities decreasing from 22 to 3 cm/s. The transition from bouncing to sticking collisions happened at 12.7 cm/s for the smaller aggregates composed of monodisperse particles and at 11.5 and 11.7 cm/s for the larger aggregates composed of mono- and polydisperse dust particles, respectively. Using the pull-off force of sub-mm-sized dust aggregates from the clusters, the surface energy of the aggregates composed of monodisperse dust was derived to be 1.6x10-5 J/m2, which can be scaled down to 1.7x10-2 J/m2 for the micrometre-sized monomer particles and is in good agreement with previous measurements for silica particles. The tensile strengths of these aggregates within the clusters were derived to be 1.9 Pa and 1.6 Pa for the small and large dust aggregates, respectively. These values are in good agreement with recent tensile strength measurements for mm-sized silica aggregates. Using our data on the sticking-bouncing threshold, estimates of the maximum aggregate size can be given. For a minimum mass solar nebula model, aggregates can reach sizes of 1 cm.
Does star formation proceed in the same way in large spirals such as the Milky Way and in smaller chemically younger galaxies? Earlier work suggests a more rapid transformation of H$_2$ into stars in these objects but (1) a doubt remains about the va lidity of the H$_2$ mass estimates and (2) there is currently no explanation for why star formation should be more efficient. M~33, a local group spiral with a mass $sim 10$% and a metallicity half that of the Galaxy, represents a first step towards the metal poor Dwarf Galaxies. We have searched for molecular clouds in the outer disk of M~33 and present here a set of detections of both $^{12}$CO and $^{13}$CO, including the only detections (for both lines) beyond the R$_{25}$ radius in a subsolar metallicity galaxy. The spatial resolution enables mass estimates for the clouds and thus a measure of the $N({rm H}_2) / I_{rm CO}$ ratio, which in turn enables a more reliable calculation of the H$_2$ mass. Our estimate for the outer disk of M~33 is $N({rm H}_2) / I_{rm CO(1-0)} sim 5 times 10^{20} ,{rm cm^{-2}/(K{rm km s^{-1}})}$ with an estimated uncertainty of a factor $le 2$. While the $^{12/13}$CO line ratios do not provide a reliable measure of $N({rm H}_2) / I_{rm CO}$, the values we find are slightly greater than Galactic and corroborate a somewhat higher $N({rm H}_2) / I_{rm CO}$ value. Comparing the CO observations with other tracers of the interstellar medium, no reliable means of predicting where CO would be detected was identified. In particular, CO detections were often not directly on local HI or FIR or H$alpha$ peaks, although generally in regions with FIR emission and high HI column density. The results presented here provide support for the quicker transformation of H$_2$ into stars in M~33 than in large local universe spirals.
Aims: Mapping the interstellar medium in 3D provides a wealth of insights into its inner working. The Milky Way is the only galaxy for which detailed 3D mapping can be achieved in principle. In this paper, we reconstruct the dust density in and aroun d the local super-bubble. Methods: The combined data from surveys such as Gaia, 2MASS, PANSTARRS, and ALLWISE provide the necessary information to make detailed maps of the interstellar medium in our surrounding. To this end, we used variational inference and Gaussian processes to model the dust extinction density, exploiting its intrinsic correlations. Results: We reconstructed a highly resolved dust map, showing the nearest dust clouds at a distance of up to 400pc with a resolution of 1pc. Conclusions: Our reconstruction provides insights into the structure of the interstellar medium. We compute summary statistics of the spectral index and the 1-point function of the logarithmic dust extinction density, which may constrain simulations of the interstellar medium that achieve a similar resolution.
114 - Y. I. Izotov 2014
We studied the global characteristics of dust emission in a large sample of emission-line star-forming galaxies. The sample consists of two subsamples. One subsample (SDSS sample) includes ~4000 compact star-forming galaxies from the SDSS, which were also detected in all four bands at 3.4, 4.6, 12, and 22 mum of the WISE all-sky survey. The second subsample (Herschel sample) is a sample of 28 compact star-forming galaxies observed with Herschel in the FIR range. Data of the Herschel sample were supplemented by the photometric data from the Spitzer observations, GALEX, SDSS, WISE, 2MASS, NVSS, and FIRST surveys, as well as optical and Spitzer spectra and data in sub-mm and radio ranges. It is found that warm dust luminosities of galaxies from the SDSS sample and cold and warm dust luminosities of galaxies from the Herschel sample are strongly correlated with Hbeta luminosities, which implies that one of the main sources of dust heating in star-forming galaxies is ionising UV radiation of young stars. Using the relation between warm and cold dust masses for estimating the total dust mass in star-forming galaxies with an accuracy better than ~0.5 dex is proposed. On the other hand, it is shown for both samples that dust temperatures do not depend on the metallicities. The dust-to-neutral gas mass ratio strongly declines with decreasing metallicity, similar to that found in other studies of local emission-line galaxies, high-redshift GRB hosts, and DLAs. On the other hand, the dust-to-ionised gas mass ratio is about one hundred times as high implying that most of dust is located in the neutral gas. It is found that thermal free-free emission of ionised gas in compact star-forming galaxies might be responsible for the sub-mm emission excess. This effect is stronger in galaxies with lower metallicities and is also positively affected by an increased star-formation rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا