ﻻ يوجد ملخص باللغة العربية
In thermal light ghost imaging, the correlation orders were usually positive integers in previous studies. In this paper, we examine the fractional-order moments, whose correlation order are fractional numbers, between the bucket and reference signals in the ghost imaging system. The crucial step in theory is to determine the precise relation between the bucket signals and reference signals. We deduce the joint probability density function between the bucket and reference signals by regarding the reference signals as an array of independent stochastic variables. In calculating the fractional-order moments, the correlation order for the reference signals must be positive to avoid infinity. While the correlation order for the bucket signals can be positive or negative numbers. Negative (positive) ghost images are obtained with negative (positive) orders of the bucket signals. The visibility degree and signal-to-noise ratio of ghost images from the fractional-order moments are analysed. The experimental results and numerical simulations meet our analysis based on probability theory.
Imaging with the second-order correlation of two light fields is a method to image an object by two-photon interference involving a joint detection of two photons at distant space-time points. We demonstrate for the first time that an image with high
A third-order double-slit interference experiment with pseudo-thermal light source in the high-intensity limit has been performed by actually recording the intensities in three optical paths. It is shown that not only can the visibil- ity be dramatic
We report, for the first time, the observation of sub-wavelength coherent image of a pure phase object with thermal light,which represents an accurate Fourier transform. We demonstrate that ghost-imaging scheme (GI) retrieves amplitude transmittance
We propose a experimental scenario of edge enhancement ghost imaging of phase objects with nonlocal orbital angular momentum (OAM) phase filters. Spatially incoherent thermal light is separated into two daughter beams, the test and reference beams, i
The spatial correlation with classical lights, which has some similar aspects as that with entangled lights, is an interesting and fundamentally important topic. But the features of high-order spatial correlation with classical lights are not well kn