ﻻ يوجد ملخص باللغة العربية
We present a new neutrinoless double beta decay concept: the high pressure selenium hexafluoride gas time projection chamber. Combining techniques pioneered in high pressure xenon gas such as topological discrimination, with the high Q-value afforded by double beta decay isotope $^{82}$Se, a promising new detection technique is outlined. Lack of free electrons in SeF$_6$ mandates the use of an ion TPC. The microphysics of ion production and drift, which have many nuances, are explored. Background estimates are produced suggesting such a detector may achieve background indices of better than 1 count per ton per year in the region of interest at the 100~kg scale, and still better at the ton-scale.
A new method to tag the barium daughter in the double beta decay of $^{136}$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$^{++}$) resolution at a transparent scanning surface has bee
NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta ($beta beta 0 u$) decay of Xe-136. The detector possesses two features of great value for $beta beta 0 u$ searches:
Environmental radioactivity is a dominant background for rare decay search experiments, and it is difficult to completely remove such an impurity from detector vessels. We propose a scintillation balloon as the active vessel of a liquid scintillator
Background rejection is key to success for future neutrinoless double beta decay experiments. To achieve sensitivity to effective Majorana lifetimes of $sim10^{28}$ years, backgrounds must be controlled to better than 0.1 count per ton per year, beyo
The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta decay of 76Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the Q-value of the decay