ﻻ يوجد ملخص باللغة العربية
Metrics have been used to investigate the relationship between wavefunction distances and density distances for families of specific systems. We extend this research to look at random potentials for time-dependent single electron systems, and for ground-state two electron systems. We find that Fourier series are a good basis for generating random potentials. These random potentials also yield quasi-linear relationships between the distances of ground-state densities and wavefunctions, providing a framework in which Density Functional Theory can be explored.
Entropic measures provide analytic tools to help us understand correlation in quantum systems. In our previous work, we calculated linear entropy and von Neumann entropy as entanglement measures for the ground state and lower lying excited states in
We make use of a Hylleraas-type wave function to derive an exact analytical model to quantify correlation in two-electron atomic/ionic systems and subsequently employ it to examine the role of inter-electronic repulsion in affecting (i) the bare (unc
We prove a necessary and sufficient condition for the occurrence of entanglement in two two-level systems, simple enough to be of experimental interest. Our results are illustrated in the context of a spin star system analyzing the exact entanglement evolution of the central couple of spins.
In this paper we show that electron-positron pairs can be pumped inexhaustibly with a constant production rate from the one dimensional potential well with oscillating depth or width. Bound states embedded in the the Dirac sea can be pulled out and p
A conceptually simpler proof of the separability criterion for two-qubit systems, which is referred to as Hefei inequality in literature, is presented. This inequality gives a necessary and sufficient separability criterion for any mixed two-qubit sy