ﻻ يوجد ملخص باللغة العربية
R&D activity on Cu photocathodes is under development at the SPARC_LAB test facility to fully characterize each stage of the photocathode life and to have a complete overview of the photoemission properties in high brightness photo-injectors. The nano(n)-machining process presented here consists in diamond milling, and blowing with dry nitrogen. This procedure reduces the roughness of the cathode surface and prevents surface contamination introduced by other techniques, such as polishing with diamond paste or the machining with oil. Both high roughness and surface contamination cause an increase of intrinsic emittance and consequently a reduction of the overall electron beam brightness. To quantify these effects, we have characterized the photocathode surface in terms of roughness measurement, and morphology and chemical composition analysis by means of Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and Atomic Force Microscopy (AFM) techniques. The effects of n-machining on the electron beam quality have been also investigated through emittance measurements before and after the surface processing technique. Finally, we present preliminary emittance studies of yttrium thin film on Cu photocathodes.
FLAME is a high power laser system installed at the SPARC_LAB Test Facility in Frascati (Italy). The ultra-intense laser pulses are employed to study the interaction with matter for many purposes: electron acceleration through LWFA, ion and proton ge
A system for online measurement of the transverse beam emittance was developed. It is named $^{4}$PrOB$varepsilon$aM (4-Profiler Online Beam Emittance Measurement) and was conceived to measure the emittance in a fast and efficient way using the multi
Beam injection and extraction from a plasma module is still one of the crucial aspects to solve in order to produce high quality electron beams with a plasma accelerator. Proper matching conditions require to focus the incoming high brightness beam d
On the wake of the results obtained so far at the SPARC_LAB test-facility at the Laboratori Nazionali di Frascati (Italy), we are currently investigating the possibility to design and build a new multi-disciplinary user-facility, equipped with a soft
Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Of special interest is the removal of inter-plane correlations to