ترغب بنشر مسار تعليمي؟ اضغط هنا

Preconditioned nonlinear conjugate gradient method for micromagnetic energy minimization

121   0   0.0 ( 0 )
 نشر من قبل Lukas Exl
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fast computation of demagnetization curves is essential for the computational design of soft magnetic sensors or permanent magnet materials. We show that a sparse preconditioner for a nonlinear conjugate gradient energy minimizer can lead to a speed up by a factor of 3 and 7 for computing hysteresis in soft magnetic and hard magnetic materials, respectively. As a preconditioner an approximation of the Hessian of the Lagrangian is used, which only takes local field terms into account. Preconditioning requires a few additional sparse matrix vector multiplications per iteration of the nonlinear conjugate gradient method, which is used for minimizing the energy for a given external field. The time to solution for computing the demagnetization curve scales almost linearly with problem size.



قيم البحث

اقرأ أيضاً

Properties of Superiorized Preconditioned Conjugate Gradient (SupPCG) algorithms in image reconstruction from projections are examined. Least squares (LS) is usually chosen for measuring data-inconsistency in these inverse problems. Preconditioned Co njugate Gradient algorithms are fast methods for finding an LS solution. However, for ill-posed problems, such as image reconstruction, an LS solution may not provide good image quality. This can be taken care of by superiorization. A superiorized algorithm leads to images with the value of a secondary criterion (a merit function such as the total variation) improved as compared to images with similar data-inconsistency obtained by the algorithm without superiorization. Numerical experimentation shows that SupPCG can lead to high-quality reconstructions within a remarkably short time. A theoretical analysis is also provided.
We present a method for performing sampling from a Boltzmann distribution of an ill-conditioned quadratic action. This method is based on heatbath thermalization along a set of conjugate directions, generated via a conjugate-gradient procedure. The r esulting scheme outperforms local updates for matrices with very high condition number, since it avoids the slowing down of modes with lower eigenvalue, and has some advantages over the global heatbath approach, compared to which it is more stable and allows for more freedom in devising case-specific optimizations.
The Preconditioned Conjugate Gradient method is often employed for the solution of linear systems of equations arising in numerical simulations of physical phenomena. While being widely used, the solver is also known for its lack of accuracy while co mputing the residual. In this article, we propose two algorithmic solutions that originate from the ExBLAS project to enhance the accuracy of the solver as well as to ensure its reproducibility in a hybrid MPI + OpenMP tasks programming environment. One is based on ExBLAS and preserves every bit of information until the final rounding, while the other relies upon floating-point expansions and, hence, expands the intermediate precision. Instead of converting the entire solver into its ExBLAS-related implementation, we identify those parts that violate reproducibility/non-associativity, secure them, and combine this with the sequential executions. These algorithmic strategies are reinforced with programmability suggestions to assure deterministic executions. Finally, we verify these approaches on two modern HPC systems: bo
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element met hod proposed by Cai et al (1998) cite{CaiEtAl1998}, although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global $L^2$ projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical scheme. The additional computational cost of the over-integration is found insignificant compared to the cost of solving the Laplace problem. The model is applied to several benchmark cases in two dimensions. The results confirm the high order accuracy of the model (exponential convergence), and demonstrate the potential for accuracy and speedup. The results of numerical experiments are in excellent agreement with both analytical and experimental results for strongly nonlinear and irregular dispersive wave propagation. The benefit of using a high-order -- possibly adapted -- spatial discretization for accurate water wave propagation over long times and distances is particularly attractive for marine hydrodynamics applications.
55 - Marijan Beg , Martin Lang , 2021
Computational micromagnetics has become an essential tool in academia and industry to support fundamental research and the design and development of devices. Consequently, computational micromagnetics is widely used in the community, and the fraction of time researchers spend performing computational studies is growing. We focus on reducing this time by improving the interface between the numerical simulation and the researcher. We have designed and developed a human-centred research environment called Ubermag. With Ubermag, scientists can control an existing micromagnetic simulation package, such as OOMMF, from Jupyter notebooks. The complete simulation workflow, including definition, execution, and data analysis of simulation runs, can be performed within the same notebook environment. Numerical libraries, co-developed by the computational and data science community, can immediately be used for micromagnetic data analysis within this Python-based environment. By design, it is possible to extend Ubermag to drive other micromagnetic packages from the same environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا