ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic Reddening in 3D from Stellar Photometry - An Improved Map

108   0   0.0 ( 0 )
 نشر من قبل Gregory Green
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new 3D map of interstellar dust reddening, covering three quarters of the sky (declinations greater than -30 degrees) out to a distance of several kiloparsecs. The map is based on high-quality stellar photometry of 800 million stars from Pan-STARRS 1 and 2MASS. We divide the sky into sightlines containing a few hundred stars each, and then infer stellar distances and types, along with the line-of-sight dust distribution. Our new map incorporates a more accurate average extinction law and an additional 1.5 years of Pan-STARRS 1 data, tracing dust to greater extinctions and at higher angular resolutions than our previous map. Out of the plane of the Galaxy, our map agrees well with 2D reddening maps derived from far-infrared dust emission. After accounting for a 15% difference in scale, we find a mean scatter of 10% between our map and the Planck far-infrared emission-based dust map, out to a depth of 0.8 mag in E(r-z), with the level of agreement varying over the sky. Our map can be downloaded at http://argonaut.skymaps.info, or by its DOI: 10.7910/DVN/LCYHJG.



قيم البحث

اقرأ أيضاً

We aim to summarize the current state of knowledge regarding Galactic Faraday rotation in an all-sky map of the Galactic Faraday depth. For this we have assembled the most extensive catalog of Faraday rotation data of compact extragalactic polarized radio sources to date. In the map making procedure we use a recently developed algorithm that reconstructs the map and the power spectrum of a statistically isotropic and homogeneous field while taking into account uncertainties in the noise statistics. This procedure is able to identify some rotation angles that are offset by an integer multiple of pi. The resulting map can be seen as an improved version of earlier such maps and is made publicly available, along with a map of its uncertainty. For the angular power spectrum we find a power law behavior with a power law index of -2.14 for a Faraday sky where an overall variance profile as a function of Galactic latitude has been removed, in agreement with earlier work. We show that this is in accordance with a 3D Fourier power spectrum P(k) proportional to k^-2.14 of the underlying field n_e times B_r under simplifying geometrical and statistical assumptions.
We present a three dimensional map of extinction in the Northern Galactic Plane derived using photometry from the IPHAS survey. The map has fine angular ($sim 10$ arcmin) and distance (100 pc) sampling allied to a significant depth ($gtrsim 5$ kpc). We construct the map using a method based on a hierarchical Bayesian model as previously described by Sale (2012). In addition to mean extinction, we also measure differential extinction, which arises from the fractal nature of the ISM, and show that it will be the dominant source of uncertainty in estimates of extinction to some arbitrary position. The method applied also furnishes us with photometric estimates of the distance, extinction, effective temperature, surface gravity, and mass for $sim 38$ million stars. Both the extinction map and the catalogue of stellar parameters are made publicly available via http://www.iphas.org/extinction .
We present a map of the dust reddening to 4.5 kpc derived from Pan-STARRS1 stellar photometry. The map covers almost the entire sky north of declination -30 degrees at a resolution of 7 to 14, and is based on the estimated distances and reddenings to more than 500 million stars. The technique is designed to map dust in the Galactic plane, where many other techniques are stymied by the presence of multiple dust clouds at different distances along each line of sight. This reddening-based dust map agrees closely with the Schlegel, Finkbeiner, and Davis (SFD; 1998) far-infrared emission-based dust map away from the Galactic plane, and the most prominent differences between the two maps stem from known limitations of SFD in the plane. We also compare the map with Planck, finding likewise good agreement in general at high latitudes. The use of optical data from Pan-STARRS1 yields reddening uncertainty as low as 25 mmag E(B-V).
We present a method to simultaneously infer the interstellar extinction parameters $A_0$ and $R_0$, stellar effective temperature $T_{rm eff}$, and distance modulus $mu$ in a Bayesian framework. Using multi-band photometry from SDSS and UKIDSS, we tr ain a forward model to emulate the colour-change due to physical properties of stars and the interstellar medium for temperatures from 4000 to 9000 K and extinctions from 0 to 5 mag. We introduce a Hertzsprung-Russel diagram prior to account for physical constraints on the distribution of stars in the temperature-absolute magnitude plane. This allows us to infer distances probabilistically. Influences of colour information, priors and model parameters are explored. Residual mean absolute errors (MAEs) on a set of objects for extinction and temperature are 0.2 mag and 300 K, respectively, for $R_0$ fixed to 3.1. For variable $R_0$, we obtain MAEs of 0.37 mag, 412.9 K and 0.74 for $A_0$, $T_{rm eff}$ and $R_0$, respectively. Distance moduli are accurate to approximately 2 mag. Quantifying the precisions of individual parameter estimates with $68%$ confidence interval of the posterior distribution, we obtain 0.05 mag, 66 K, 2 mag and 0.07 for $A_0$, $T_{rm eff}$, $mu$ and $R_0$, respectively, although we find that these underestimate the accuracy of the model. We produce two-dimensional maps in extinction and $R_0$ that are compared to previous work. Furthermore we incorporate the inferred distance information to compute fully probabilistic distance profiles for individual lines of sight. The individual stellar AP estimates, combined with inferred 3D information will make possible many Galactic science and modelling applications. Adapting our method to work with other surveys, such as Pan-STARRS and Gaia, will allow us to probe other regions of the Galaxy.
427 - F. Surot , E. Valenti (3 2020
The detailed study of the Galactic bulge stellar population necessarily requires an accurate representation of the interstellar extinction particularly toward the Galactic plane and center, where the severe and differential reddening is expected to v ary on sub-arcmin scales. Although recent infrared surveys have addressed this problem by providing extinction maps across the whole Galactic bulge area, dereddened color-magnitude diagrams near the plane and center appear systematically undercorrected, suggesting the need for higher resolutions. These undercorrections affect any stellar study sensitive to color (e.g. star formation history analysis via color-magnitude diagram fitting), either making them inaccurate or limiting them to small low/stable extinction windows where this value is better constrained. We aim at providing a high-resolution (2 arcmin to $sim$ 10 arcsec) color excess map for the VVV bulge area, in $mathrm{J}-mathrm{K}_s$ color. We use the MW-BULGE-PSFPHOT catalogs sampling $sim$ 300 deg$^2$ across the Galactic bulge ($|l| < 10^circ$ and $-10^circ < b < 5^circ$) to isolate a sample of red clump and red giant branch stars, for which we calculate average $mathrm{J}-mathrm{K}_s$ color in a fine spatial grid in $(l, b)$ space. We obtain a E$(mathrm{J}-mathrm{K}_s)$ map spanning the VVV bulge area of roughly 300 deg$^2$, with the equivalent to a resolution between $sim$ 1 arcmin for bulge outskirts ($l < -6^circ$) to below 20 arcsec within the central $|l| < 1^circ$, and below 10 arcsec for the innermost area ($|l| < 1^circ$ and $|b| < 3^circ$). The result is publicly available at http://basti-iac.oa-teramo.inaf.it/vvvexmap/
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا