ﻻ يوجد ملخص باللغة العربية
We study a time-reversal-invariant topological superconductor island hosting spatially separated Majorana Kramers pairs, with weak tunnel couplings to two s-wave superconducting leads. When the topological superconductor island is in the Coulomb blockade regime, we predict that a Josephson current flows between the two leads due to a non-local transfer of Cooper pairs mediated by the Majorana Kramers pairs. Interestingly, we find that the sign of the Josephson current is controlled by the joint parity of all four Majorana bound states on the island. Consequently, this parity-controlled Josephson effect can be used for qubit read-out in Majorana-based quantum computing.
We propose a universal gate set acting on a qubit formed by the degenerate ground states of a Coulomb-blockaded time-reversal invariant topological superconductor island with spatially separated Majorana Kramers pairs: the Majorana Kramers Qubit. All
The Josephson supercurrent through the hybrid Majorana--quantum dot--Majorana junction is investigated. We particularly analyze the effect of spin-selective coupling between the Majorana and quantum dot states, which emerges only in the topological p
We propose a tunable topological Josephson junction in silicene where electrostatic gates could switch between a trivial and a topological junction. These aspects are a consequence of a tunable phase transition of the topologically confined valley-ch
Time-reversal invariant topological superconductors are characterized by the presence of Majorana Kramers pairs localized at defects. One of the transport signatures of Majorana Kramers pairs is the quantized differential conductance of $4e^2/h$ when
High density superconductor-semiconductor-superconductor junctions have a small induced superconducting gap due to the quasiparticle trajectories with a large momentum parallel to the junction having a very long flight time. Because a large induced g