ﻻ يوجد ملخص باللغة العربية
We present the clustering measurements of quasars in configuration space based on the Data Release 14 (DR14) of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey. This dataset includes 148,659 quasars spread over the redshift range $0.8leq z leq 2.2$ and spanning 2112.9 square degrees. We use the Convolution Lagrangian Perturbation Theory (CLPT) approach with a Gaussian Streaming (GS) model for the redshift space distortions of the correlation function and demonstrate its applicability for dark matter halos hosting eBOSS quasar tracers. At the effective redshift $z_{rm eff} = 1.52$, we measure the linear growth rate of structure $fsigma_{8}(z_{rm eff})= 0.426 pm 0.077$, the expansion rate $H(z_{rm eff})= 159^{+12}_{-13}(r_{s}^{rm fid}/r_s){rm km.s}^{-1}.{rm Mpc}^{-1}$, and the angular diameter distance $D_{A}(z_{rm eff})=1850^{+90}_{-115},(r_s/r_{s}^{rm fid}){rm Mpc}$, where $r_{s}$ is the sound horizon at the end of the baryon drag epoch and $r_{s}^{rm fid}$ is its value in the fiducial cosmology. The quoted errors include both systematic and statistical contributions. The results on the evolution of distances are consistent with the predictions of flat $Lambda$-Cold Dark Matter ($Lambda$-CDM) cosmology with Planck parameters, and the measurement of $fsigma_{8}$ extends the validity of General Relativity (GR) to higher redshifts($z>1$) This paper is released with companion papers using the same sample. The results on the cosmological parameters of the studies are found to be in very good agreement, providing clear evidence of the complementarity and of the robustness of the first full-shape clustering measurements with the eBOSS DR14 quasar sample.
We present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044
We measure the growth rate and its evolution using the anisotropic clustering of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 14 (DR14) quasar sample, which includes $148,659$ quasars covering the wide redshift range of $
We analyze the anisotropic clustering of the Sloan Digital Sky Survey-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) Luminous Red Galaxy Data Release 14 (DR14) sample combined with Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sam
We measure the clustering of quasars of the final data release (DR16) of eBOSS. The sample contains $343,708$ quasars between redshifts $0.8leq zleq2.2$ over $4699,mathrm{deg}^2$. We calculate the Legendre multipoles (0,2,4) of the anisotropic power
We develop a new method, which is based on the optimal redshift weighting scheme, to extract the maximal tomographic information of baryonic acoustic oscillations (BAO) and redshift space distortions (RSD) from the extended Baryon Oscillation Spectro