ﻻ يوجد ملخص باللغة العربية
We investigate the optimality and power allocation algorithm of beam domain transmission for single-cell massive multiple-input multiple-output (MIMO) systems with a multi-antenna passive eavesdropper. Focusing on the secure massive MIMO downlink transmission with only statistical channel state information of legitimate users and the eavesdropper at base station, we introduce a lower bound on the achievable ergodic secrecy sum-rate, from which we derive the condition for eigenvectors of the optimal input covariance matrices. The result shows that beam domain transmission can achieve optimal performance in terms of secrecy sum-rate lower bound maximization. For the case of single-antenna legitimate users, we prove that it is optimal to allocate no power to the beams where the beam gains of the eavesdropper are stronger than those of legitimate users in order to maximize the secrecy sum-rate lower bound. Then, motivated by the concave-convex procedure and the large dimension random matrix theory, we develop an efficient iterative and convergent algorithm to optimize power allocation in the beam domain. Numerical simulations demonstrate the tightness of the secrecy sum-rate lower bound and the near-optimal performance of the proposed iterative algorithm.
Physical-layer key generation (PKG) in multi-user massive MIMO networks faces great challenges due to the large length of pilots and the high dimension of channel matrix. To tackle these problems, we propose a novel massive MIMO key generation scheme
In this paper, the design of robust linear precoders for the massive multi-input multi-output (MIMO) downlink with imperfect channel state information (CSI) is investigated. The imperfect CSI for each UE obtained at the BS is modeled as statistical C
In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix
The fading wire-tap channel is investigated, where the source-to-destination channel and the source-to-wire-tapper channel are corrupted by multiplicative fading gain coefficients in addition to additive Gaussian noise terms. The channel state inform
The feasibility of physical-layer-based security approaches for wireless communications in the presence of one or more eavesdroppers is hampered by channel conditions. In this paper, cooperation is investigated as an approach to overcome this problem