ﻻ يوجد ملخص باللغة العربية
Models of hadronization of hard jets in QCD are often presented in terms of Feynman-graph structures that can be thought of as effective field theory approximations to dynamical non-perturbative physics in QCD. Such models can be formulated as a kind of multiperipheral model. We obtain general constraints on such models in order for them to be self-consistent, and we relate the constraints to the space-time structure of hadronization. We show that appropriate models can be considered as implementing string-like hadronization. When the models are put in a multiperipheral form, the effective vertices and/or lines must be momentum non-conserving: they take 4-momentum from the external string-like field.
Heavy flavor supplies a chance to constrain and improve the hadronization mechanism. We have established a sequential coalescence model with charm conservation and applied it to the charmed hadron production in heavy ion collisions. The charm conserv
The interpretation of quark ($q$)- antiquark ($bar q$) pairs production and the sequential string breaking as tunneling through the event horizon of colour confinement leads to a thermal hadronic spectrum with a universal Unruh temperature, $T simeq
We summarize the standard factorization theorems for hard processes in QCD, and describe their proofs.
This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discus
Global perturbative QCD analyses, based on large data sets from e-p and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (n