ﻻ يوجد ملخص باللغة العربية
We incorporate recent calculations of one-loop corrections for the reduced Ioffe-time pseudo-distribution ${mathfrak M} ( u,z_3^2)$ to extend the leading-logarithm analysis of lattice data obtained by Orginos et al. We observe that the one-loop corrections contain a large term reflecting the fact that effective distances involved in the most important diagrams are much smaller than the nominal distance $z_3$. The large correction in this case may be absorbed into the evolution term, and the perturbative expansion used for extraction of parton densities at the $mu approx 2$ GeV scale is under control. The extracted parton distribution is rather close to global fits in the $x>0.1$ region, but deviates from them for $x<0.1$.
Perturbative matching relates the parton quasi-distributions, defined by Euclidean correlators at finite hadron momenta, to the light-cone distributions which are accessible in experiments. Previous matching calculations have exclusively focused on t
We perform a first calculation for the unpolarized parton distribution function of the $Delta^+$ baryon using lattice QCD simulations within the framework of Large Momentum Effective Theory. Two ensembles of $N_f=2+1+1$ twisted mass fermions are util
The path-integral formulation of the hadronic tensor W_{mu u} of deep inelastic scattering is reviewed. It is shown that there are 3 gauge invariant and topologically distinct contributions. The separation of the connected sea partons from those of t
Initial state evolution in parton shower event generators involves parton distribution functions. We examine the probability for the system to evolve from a higher scale to a lower scale without an initial state splitting. A simple argument suggests
We present results for renormalized matrix elements related to the unpolarized quasi-distribution function of the $Delta^+$ baryon making use of the large momentum effective theory. Two ensembles of $N_f=2+1+1$ twisted mass fermions with a clover ter