ترغب بنشر مسار تعليمي؟ اضغط هنا

A Mixed Finite Element Method for Multi-Cavity Computation in Incompressible Nonlinear Elasticity

198   0   0.0 ( 0 )
 نشر من قبل Weijie Huang
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A mixed finite element method combining an iso-parametric $Q_2$-$P_1$ element and an iso-parametric $P_2^+$-$P_1$ element is developed for the computation of multiple cavities in incompressible nonlinear elasticity. The method is analytically proved to be locking-free and convergent, and it is also shown to be numerically accurate and efficient by numerical experiments. Furthermore, the newly developed accurate method enables us to find an interesting new bifurcation phenomenon in multi-cavity growth.



قيم البحث

اقرأ أيضاً

231 - Weijie Huang , Zhiping Li 2017
A mixed finite element method (MFEM), using dual-parametric piecewise bi-quadratic and affine (DP-Q2-P1) finite element approximations for the deformation and the pressure like Lagrange multiplier respectively, is developed and analyzed for the numer ical computation of incompressible nonlinear elasticity problems with large deformation gradient, and a damped Newton method is applied to solve the resulted discrete problem. The method is proved to be locking free and stable. The accuracy and efficiency of the method are illustrated by numerical experiments on some typical cavitation problems.
We show that in bounded domains with no-slip boundary conditions, the Navier-Stokes pressure can be determined in a such way that it is strictly dominated by viscosity. As a consequence, in a general domain we can treat the Navier-Stokes equations as a perturbed vector diffusion equation, instead of as a perturbed Stokes system. To illustrate the advantages of this view, we provide a simple proof of the unconditional stability of a difference scheme that is implicit only in viscosity and explicit in both pressure and convection terms, requiring no solution of stationary Stokes systems or inf-sup conditions.
We propose employing the extension of the Lehmann-Maehly-Goerisch method developed by Zimmermann and Mertins, as a highly effective tool for the pollution-free finite element computation of the eigenfrequencies of the resonant cavity problem on a bou nded region. This method gives complementary bounds for the eigenfrequencies which are adjacent to a given real parameter. We present a concrete numerical scheme which provides certified enclosures in a suitable asymptotic regime. We illustrate the applicability of this scheme by means of some numerical experiments on benchmark data using Lagrange elements and unstructured meshes.
120 - Shubin Fu , Eric Chung , Tina Mai 2019
In this paper, we apply the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) to first solving a nonlinear poroelasticity problem. The arising system consists of a nonlinear pressure equation and a nonlinear stres s equation in strain-limiting setting, where strains keep bounded while stresses can grow arbitrarily large. After time discretization of the system, to tackle the nonlinearity, we linearize the resulting equations by Picard iteration. To handle the linearized equations, we employ the CEM-GMsFEM and obtain appropriate offline multiscale basis functions for the pressure and the displacement. More specifically, first, auxiliary multiscale basis functions are generated by solving local spectral problems, via the GMsFEM. Then, multiscale spaces are constructed in oversampled regions, by solving a constraint energy minimizing (CEM) problem. After that, this strategy (with the CEM-GMsFEM) is also applied to a static case of the above nonlinear poroelasticity problem, that is, elasticity problem, where the residual based online multiscale basis functions are generated by an adaptive enrichment procedure, to further reduce the error. Convergence of the two cases is demonstrated by several numerical simulations, which give accurate solutions, with converging coarse-mesh sizes as well as few basis functions (degrees of freedom) and oversampling layers.
Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterat ive Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا