ﻻ يوجد ملخص باللغة العربية
A mixed finite element method combining an iso-parametric $Q_2$-$P_1$ element and an iso-parametric $P_2^+$-$P_1$ element is developed for the computation of multiple cavities in incompressible nonlinear elasticity. The method is analytically proved to be locking-free and convergent, and it is also shown to be numerically accurate and efficient by numerical experiments. Furthermore, the newly developed accurate method enables us to find an interesting new bifurcation phenomenon in multi-cavity growth.
A mixed finite element method (MFEM), using dual-parametric piecewise bi-quadratic and affine (DP-Q2-P1) finite element approximations for the deformation and the pressure like Lagrange multiplier respectively, is developed and analyzed for the numer
We show that in bounded domains with no-slip boundary conditions, the Navier-Stokes pressure can be determined in a such way that it is strictly dominated by viscosity. As a consequence, in a general domain we can treat the Navier-Stokes equations as
We propose employing the extension of the Lehmann-Maehly-Goerisch method developed by Zimmermann and Mertins, as a highly effective tool for the pollution-free finite element computation of the eigenfrequencies of the resonant cavity problem on a bou
In this paper, we apply the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) to first solving a nonlinear poroelasticity problem. The arising system consists of a nonlinear pressure equation and a nonlinear stres
Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterat