ﻻ يوجد ملخص باللغة العربية
Tensor Train decomposition is used across many branches of machine learning. We present T3F -- a library for Tensor Train decomposition based on TensorFlow. T3F supports GPU execution, batch processing, automatic differentiation, and versatile functionality for the Riemannian optimization framework, which takes into account the underlying manifold structure to construct efficient optimization methods. The library makes it easier to implement machine learning papers that rely on the Tensor Train decomposition. T3F includes documentation, examples and 94% test coverage.
The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We
In this paper, we develop software for decomposing sparse tensors that is portable to and performant on a variety of multicore, manycore, and GPU computing architectures. The result is a single code whose performance matches optimized architecture-sp
The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present wor
The adoption of neural networks and deep learning in non-Euclidean domains has been hindered until recently by the lack of scalable and efficient learning frameworks. Existing toolboxes in this space were mainly motivated by research and education us
There is a significant expansion in both volume and range of applications along with the concomitant increase in the variety of data sources. These ever-expanding trends have highlighted the necessity for more versatile analysis tools that offer grea