ﻻ يوجد ملخص باللغة العربية
The Initial Mass Function (IMF) for massive galaxies can be constrained by combining stellar dynamics with strong gravitational lensing. However, this method is limited by degeneracies between the density profile of dark matter and the stellar mass-to-light ratio. In this work we reduce this degeneracy by combining weak lensing together with strong lensing and stellar kinematics. Our analysis is based on two galaxy samples: 45 strong lenses from the SLACS survey and 1,700 massive quiescent galaxies from the SDSS main spectroscopic sample with weak lensing measurements from the Hyper Suprime-Cam survey. We use a Bayesian hierarchical approach to jointly model all three observables. We fit the data with models of varying complexity and show that a model with a radial gradient in the stellar mass-to-light ratio is required to simultaneously describe both galaxy samples. This result is driven by a subset of strong lenses with very steep total density profile, that cannot be fitted by models with no gradient. Our measurements are unable to determine whether $M_*/L$ gradients are due to variations in stellar population parameters at fixed IMF, or to gradients in the IMF itself. The inclusion of $M_*/L$ gradients decreases dramatically the inferred IMF normalisation, compared to previous lensing-based studies, with the exact value depending on the assumed dark matter profile. The main effect of strong lensing selection is to shift the stellar mass distribution towards the high mass end, while the halo mass and stellar IMF distribution at fixed stellar mass are not significantly affected.
We present models for the dark and luminous mass structure of 12 strong lensing early-type galaxies (ETGs). We combine pixel-based modelling of multiband HST/ACS imaging with Jeans modelling of kinematics obtained from Keck/ESI spectra to disentangle
We present a combined strong and weak lensing analysis of the J085007.6+360428 (J0850) field, which was selected by its high projected concentration of luminous red galaxies and contains the massive cluster Zwicky 1953. Using Subaru/Suprime-Cam $BVR_
We investigate how strong gravitational lensing can test contemporary models of massive elliptical (ME) galaxy formation, by combining a traditional decomposition of their visible stellar distribution with a lensing analysis of their mass distributio
We use galaxy-galaxy lensing to study the dark matter halos surrounding a sample of Locally Brightest Galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central ga
We describe the luminosity function, based on Sersic fits to the light profiles, of CMASS galaxies at z ~ 0.55. Compared to previous estimates, our Sersic-based reductions imply more luminous, massive galaxies, consistent with the effects of Sersic-