ﻻ يوجد ملخص باللغة العربية
A quantum system can be driven by either sinusoidal, rectangular, or noisy signals. In the literature, these regimes are referred to as Landau-Zener-Stuckelberg-Majorana (LZSM) interferometry, latching modulation, and motional averaging, respectively. We demonstrate that these pronounced and interesting effects are also inherent in the dynamics of classical two-state systems. We discuss how such classical systems are realized using either mechanical, electrical, or optical resonators. In addition to the fundamental interest of such dynamical phenomena linking classical and quantum physics, we believe that these are attractive for the classical analogue simulation of quantum systems.
The implementation of quantum technologies in electronics leads naturally to the concept of coherent single-electron circuits, in which a single charge is used coherently to provide enhanced performance. In this work, we propose a coherent single-ele
We perform Landau-Zener-Stuckelberg-Majorana (LZSM) spectroscopy on a system with strong spin-orbit interaction (SOI), realized as a single hole confined in a gated double quantum dot. In analogy to the electron systems, at magnetic field B=0 and hig
In this work we propose a way to unveil the type of environmental noise in strongly driven superconducting flux qubits through the analysis of the Landau-Zener-Stuckelberg (LZS) interferometry. We study both the two-level and the multilevel dynamics
We demonstrate amplification (and attenuation) of a probe signal by a driven two-level quantum system in the Landau-Zener-St{u}ckelberg-Majorana regime by means of an experiment, in which a superconducting qubit was strongly coupled to a microwave ca
Using the Landau-Zener-Stuckelberg-Majorana-type (LZSM) semiclassical approach, we study both graphene and a thin film of a Weyl semimetal subjected to a strong AC electromagnetic field. The spectrum of quasi energies in the Weyl semimetal turns out