ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperelastic antiplane ground cloaking

110   0   0.0 ( 0 )
 نشر من قبل William Parnell
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hyperelastic materials possess the appealing property that they may be employed as elastic wave manipulation devices and cloaks by imposing pre-deformation. They provide an alternative to microstructured metamaterials and can be used in a reconfigurable manner. Previous studies indicate that exact elastodynamic invariance to pre-deformation holds only for neo-Hookean solids in the antiplane wave scenario and the semi-linear material in the in-plane compressional/shear wave context. Furthermore, although ground cloaks have been considered in the acoustic context they have not yet been discussed for elastodynamics, either by employing microstructured cloaks or hyperelastic cloaks. This work therefore aims at exploring the possibility of employing a range of hyperelastic materials for use as antiplane ground cloaks (AGCs). The use of the popular incompressible Arruda-Boyce and Mooney-Rivlin nonlinear materials is explored. The scattering problem associated with the AGC is simulated via finite element analysis where the cloaked region is formed by an indentation of the surface. Results demonstrate that the neo-Hookean medium can be used to generate a perfect hyperelastic AGC as should be expected. Furthermore, although the AGC performance of the Mooney-Rivlin material is not particularly satisfactory, it is shown that the Arruda-Boyce medium is an excellent candidate material for this purpose.



قيم البحث

اقرأ أيضاً

129 - William J. Parnell 2012
A theory is presented showing that cloaking of objects from antiplane elastic waves can be achieved by elastic pre-stress of a neo-Hookean nonlinear elastic material. This approach would appear to eliminate the requirement of metamaterials with inhom ogeneous anisotropic shear moduli and density. Waves in the pre-stressed medium are bent around the cloaked region by inducing inhomogeneous stress fields via pre-stress. The equation governing antiplane waves in the pre-stressed medium is equivalent to the antiplane equation in an unstressed medium with inhomogeneous and anisotropic shear modulus and isotropic scalar mass density. Note however that these properties are induced naturally by the pre-stress. Since the magnitude of pre-stress can be altered at will, this enables objects of varying size and shape to be cloaked by placing them inside the fluid-filled deformed cavity region.
In the emerging field of 3D bioprinting, cell damage due to large deformations is considered a main cause for cell death and loss of functionality inside the printed construct. Those deformations, in turn, strongly depend on the mechano-elastic respo nse of the cell to the hydrodynamic stresses experienced during printing. In this work, we present a numerical model to simulate the deformation of biological cells in arbitrary three-dimensional flows. We consider cells as an elastic continuum according to the hyperelastic Mooney-Rivlin model. We then employ force calculations on a tetrahedralized volume mesh. To calibrate our model, we perform a series of FluidFM(R) compression experiments with REF52 cells demonstrating that all three parameters of the Mooney-Rivlin model are required for a good description of the experimental data at very large deformations up to 80%. In addition, we validate the model by comparing to previous AFM experiments on bovine endothelial cells and artificial hydrogel particles. To investigate cell deformation in flow, we incorporate our model into Lattice Boltzmann simulations via an Immersed-Boundary algorithm. In linear shear flows, our model shows excellent agreement with analytical calculations and previous simulation data.
We propose two approaches to cloak the spin waves (magnons) by investigating magnetization dynamics. One approach is based on a spatially inhomogeneous anisotropic magnetic moment tensor. The other mechanism is using a spatially inhomogeneous anisotr opic gyromagnetic factor tensor and an inhomogeneous external magnetic field. For both approaches, the damping tensor is also inhomogeneous and anisotropic. The magnetic characteristic functions of the magnetic materials have been theoretically derived for both mechanisms. A non-magnetic core, which prevents magnons from entering and consequently distorts the spin wave propagation, can be cloaked by a structured magnetic shell to redirect the spin wave around the core using the above design mechanisms. We discuss the feasibility of the proposed mechanisms in an ensemble of quantum dot molecules and magnetic semiconductors. The proposed approaches shed light on transformation magnonics, and can be utilized for future spin-wave lenses, concentrators, low back-scattering waveguides, and ultimately quantum computing.
It is shown that nonlinear elastic pre-stress of neo-Hookean hyperelastic materials can be used as a mechanism to generate finite cloaks and thus render objects near-invisible to incoming antiplane elastic waves. This approach appears to negate the r equirement for special cloaking metamaterials with inhomogeneous and anisotropic material properties in this case. These properties are induced naturally by virtue of the pre-stress. This appears to provide a mechanism for broadband cloaking since dispersive effects due to metamaterial microstructure will not arise.
We study the approximate cloaking via transformation optics for electromagnetic waves in the time harmonic regime in which the cloaking device {it only} consists of a layer constructed by the mapping technique. Due to the fact that no-lossy layer is required, resonance might appear and the analysis is delicate. We analyse both non-resonant and resonant cases. In particular, we show that the energy can blow up inside the cloaked region in the resonant case and/whereas cloaking is {it achieved} in {it both} cases. Moreover, the degree of visibility {it depends} on the compatibility of the source inside the cloaked region and the system. These facts are new and distinct from known mathematical results in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا