ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of a Disorder-Induced Bose-Einstein Condensate in a Quantum Spin Material at High Magnetic Fields

106   0   0.0 ( 0 )
 نشر من قبل Mladen Horvati\\'c
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coupled spin-1 chains material NiCl$_2$-4SC(NH$_2$)$_2$ (DTN) doped with Br impurities is expected to be a perfect candidate for observing many-body localization at high magnetic field: the so-called Bose glass, a zero-temperature bosonic fluid, compressible, gapless, incoherent, and short-range correlated. Using nuclear magnetic resonance (NMR), we critically address the stability of the Bose glass in doped DTN, and find that it hosts a novel disorder-induced ordered state of matter, where many-body physics leads to an unexpected resurgence of quantum coherence emerging from localized impurity states. An experimental phase diagram of this new order-from-disorder phase, established from NMR $T_1^{-1}$ relaxation rate data in the (13 $pm$ 1)% Br-doped DTN, is found to be in excellent agreement with the theoretical prediction from large-scale quantum Monte Carlo simulations.



قيم البحث

اقرأ أيضاً

The weakly coupled quasi-one-dimensional spin ladder compound (CH$_3$)$_2$CHNH$_3$CuCl$_3$ is studied by neutron scattering in magnetic fields exceeding the critical field of Bose-Einstein condensation of magnons. Commensurate long-range order and th e associated Goldstone mode are detected and found to be similar to those in a reference 3D quantum magnet. However, for the upper two massive magnon branches the observed behavior is totally different, culminating in a drastic collapse of excitation bandwidth beyond the transition point.
For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper we propose a fundamentally different regime for enhanced quantum fluctuations without being restricted by any of the above conditions. Instead, our scheme relies on the engineering of an effective attractive interaction in a dilute, two-component Bose-Einstein condensate (BEC) consisting of thousands of atoms. In such a regime, the quantum spin fluctuations are significantly enhanced (atom bunching with respect to the noninteracting limit) since they act to reduce the interaction energy - a remarkable property given that spin fluctuations are normally suppressed (anti-bunching) at zero temperature. In contrast to the case of true attractive interactions, our approach is not vulnerable to BEC collapse. We numerically demonstrate that these quantum fluctuations are experimentally accessible by either spin or single-component Bragg spectroscopy, offering a useful platform on which to test beyond-mean-field theories. We also develop a variational model and use it to analytically predict the shift of the immiscibility critical point, finding good agreement with our numerics.
87 - Hiromitsu Takeuchi 2020
We find a novel topological defect in a spin-nematic superfluid theoretically. A quantized vortex spontaneously breaks its axisymmetry, leading to an elliptic vortex in nematic-spin Bose-Einstein condensates with small positive quadratic Zeeman effec t. The new vortex is considered the Joukowski transform of a conventional vortex. Its oblateness grows when the Zeeman length exceeds the spin healing length. This structure is sustained by balancing the hydrodynamic potential and the elasticity of a soliton connecting two spin spots, which are observable by in situ magnetization imaging. The theoretical analysis clearly defines the difference between half quantum vortices of the polar and antiferromagnetic phases in spin-1 condensates.
Combined experimental and modeling studies of the magnetocaloric effect, ultrasound, and magnetostriction were performed on single-crystal samples of the spin-dimer system Sr$_3$Cr$_2$O$_8$ in large magnetic fields, to probe the spin-correlated regim e in the proximity of the field-induced XY-type antiferromagnetic order also referred to as a Bose-Einstein condensate of magnons. The magnetocaloric effect, measured under adiabatic conditions, reveals details of the field-temperature ($H,T$) phase diagram, a dome characterized by critical magnetic fields $H_{c1}$ = 30.4 T, $H_{c2}$ = 62 T, and a single maximum ordering temperature $T_{{rm max}}(45~$T$)simeq$8 K. The sample temperature was observed to drop significantly as the magnetic field is increased, even for initial temperatures above $T_{{rm max}}$, indicating a significant magnetic entropy associated to the field-induced closure of the spin gap. The ultrasound and magnetostriction experiments probe the coupling between the lattice degrees of freedom and the magnetism in Sr$_3$Cr$_2$O$_8$. Our experimental results are qualitatively reproduced by a minimalistic phenomenological model of the exchange-striction by which sound waves renormalize the effective exchange couplings.
We report on the observation of the confinement-induced collapse dynamics of a dipolar Bose-Einstein condensate (dBEC) in a one-dimensional optical lattice. We show that for a fixed interaction strength the collapse can be initiated in-trap by loweri ng the lattice depth below a critical value. Moreover, a stable dBEC in the lattice may become unstable during the time-of-flight dynamics upon release, due to the combined effect of the anisotropy of the dipolar interactions and inter-site coherence in the lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا