ﻻ يوجد ملخص باللغة العربية
In this paper, a new and convenient $chi^2$ wald test based on MCMC outputs is proposed for hypothesis testing. The new statistic can be explained as MCMC version of Wald test and has several important advantages that make it very convenient in practical applications. First, it is well-defined under improper prior distributions and avoids Jeffrey-Lindleys paradox. Second, its asymptotic distribution can be proved to follow the $chi^2$ distribution so that the threshold values can be easily calibrated from this distribution. Third, its statistical error can be derived using the Markov chain Monte Carlo (MCMC) approach. Fourth, most importantly, it is only based on the posterior MCMC random samples drawn from the posterior distribution. Hence, it is only the by-product of the posterior outputs and very easy to compute. In addition, when the prior information is available, the finite sample theory is derived for the proposed test statistic. At last, the usefulness of the test is illustrated with several applications to latent variable models widely used in economics and finance.
This paper proposes a new linearized mixed data sampling (MIDAS) model and develops a framework to infer clusters in a panel regression with mixed frequency data. The linearized MIDAS estimation method is more flexible and substantially simpler to im
This paper reexamines the seminal Lagrange multiplier test for cross-section independence in a large panel model where both the number of cross-sectional units n and the number of time series observations T can be large. The first contribution of the
We consider a situation where the distribution of a random variable is being estimated by the empirical distribution of noisy measurements of that variable. This is common practice in, for example, teacher value-added models and other fixed-effect mo
We provide a method to determine whether a new recommendation system improves the revenue per visit (RPV) compared to the status quo. We achieve our goal by splitting RPV into conversion rate and average order value (AOV). We use the two-part test su
Many recent Markov chain Monte Carlo (MCMC) samplers leverage continuous dynamics to define a transition kernel that efficiently explores a target distribution. In tandem, a focus has been on devising scalable variants that subsample the data and use