ترغب بنشر مسار تعليمي؟ اضغط هنا

Advice from the Oracle: Really Intelligent Information Retrieval

75   0   0.0 ( 0 )
 نشر من قبل Michael J. Kurtz
 تاريخ النشر 2018
والبحث باللغة English
 تأليف Michael J. Kurtz




اسأل ChatGPT حول البحث

What is intelligent information retrieval? Essentially this is asking what is intelligence, in this article I will attempt to show some of the aspects of human intelligence, as related to information retrieval. I will do this by the device of a semi-imaginary Oracle. Every Observatory has an oracle, someone who is a distinguished scientist, has great administrative responsibilities, acts as mentor to a number of less senior people, and as trusted advisor to even the most accomplished scientists, and knows essentially everyone in the field. In an appendix I will present a brief summary of the Statistical Factor Space method for text indexing and retrieval, and indicate how it will be used in the Astrophysics Data System Abstract Service. 2018 Keywords: Personal Digital Assistant; Supervised Topic Models



قيم البحث

اقرأ أيضاً

Information Retrieval (IR) aims at retrieving documents that are most relevant to a query provided by a user. Traditional techniques rely mostly on syntactic methods. In some cases, however, links at a deeper semantic level must be considered. In thi s paper, we explore a type of IR task in which documents describe sequences of events, and queries are about the state of the world after such events. In this context, successfully matching documents and query requires considering the events possibly implicit, uncertain effects and side-effects. We begin by analyzing the problem, then propose an action language based formalization, and finally automate the corresponding IR task using Answer Set Programming.
Solving strategic games with huge action space is a critical yet under-explored topic in economics, operations research and artificial intelligence. This paper proposes new learning algorithms for solving two-player zero-sum normal-form games where t he number of pure strategies is prohibitively large. Specifically, we combine no-regret analysis from online learning with Double Oracle (DO) methods from game theory. Our method -- emph{Online Double Oracle (ODO)} -- is provably convergent to a Nash equilibrium (NE). Most importantly, unlike normal DO methods, ODO is emph{rationale} in the sense that each agent in ODO can exploit strategic adversary with a regret bound of $mathcal{O}(sqrt{T k log(k)})$ where $k$ is not the total number of pure strategies, but rather the size of emph{effective strategy set} that is linearly dependent on the support size of the NE. On tens of different real-world games, ODO outperforms DO, PSRO methods, and no-regret algorithms such as Multiplicative Weight Update by a significant margin, both in terms of convergence rate to a NE and average payoff against strategic adversaries.
This paper presents our research on leveraging social media Big Data and AI to support hurricane disaster emergency response. The current practice of hurricane emergency response for rescue highly relies on emergency call centres. The more recent Hur ricane Harvey event reveals the limitations of the current systems. We use Hurricane Harvey and the associated Houston flooding as the motivating scenario to conduct research and develop a prototype as a proof-of-concept of using an intelligent agent as a complementary role to support emergency centres in hurricane emergency response. This intelligent agent is used to collect real-time streaming tweets during a natural disaster event, to identify tweets requesting rescue, to extract key information such as address and associated geocode, and to visualize the extracted information in an interactive map in decision supports. Our experiment shows promising outcomes and the potential application of the research in support of hurricane emergency response.
Deploying Machine Learning (ML) algorithms within databases is a challenge due to the varied computational footprints of modern ML algorithms and the myriad of database technologies each with its own restrictive syntax. We introduce an Apache Spark-b ased micro-service orchestration framework that extends database operations to include web service primitives. Our system can orchestrate web services across hundreds of machines and takes full advantage of cluster, thread, and asynchronous parallelism. Using this framework, we provide large scale clients for intelligent services such as speech, vision, search, anomaly detection, and text analysis. This allows users to integrate ready-to-use intelligence into any datastore with an Apache Spark connector. To eliminate the majority of overhead from network communication, we also introduce a low-latency containerized version of our architecture. Finally, we demonstrate that the services we investigate are competitive on a variety of benchmarks, and present two applications of this framework to create intelligent search engines, and real-time auto race analytics systems.
We consider the problem of sampling from solutions defined by a set of hard constraints on a combinatorial space. We propose a new sampling technique that, while enforcing a uniform exploration of the search space, leverages the reasoning power of a systematic constraint solver in a black-box scheme. We present a series of challenging domains, such as energy barriers and highly asymmetric spaces, that reveal the difficulties introduced by hard constraints. We demonstrate that standard approaches such as Simulated Annealing and Gibbs Sampling are greatly affected, while our new technique can overcome many of these difficulties. Finally, we show that our sampling scheme naturally defines a new approximate model counting technique, which we empirically show to be very accurate on a range of benchmark problems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا