ﻻ يوجد ملخص باللغة العربية
We investigate the competition between charge-density-wave (CDW) states and a Coulomb interaction-driven topological Mott insulator (TMI) in the honeycomb extended Hubbard model. For the spinful model with on-site ($U$) and next-nearest-neighbor ($V_2$) Coulomb interactions at half filling, we find two peculiar six-sublattice charge-density-wave insulating states by using variational Monte Carlo simulations as well as the Hartree-Fock approximation. We observe that conventional ordered states always win with respect to the TMI. The ground state is given in the large-$V_2$ region by a CDW characterized by a 220200 (001122) charge configuration for smaller (larger) $U$, where 0, 1, and 2 denote essentially empty, singly occupied, and doubly occupied sites. Within the 001122-type CDW phase, we find a magnetic transition driven by an emergent coupled-dimer antiferromagnet on an effective square lattice of singly occupied sites. Possible realizations of the found states are discussed.
The physics of the triangular lattice Hubbard model exhibits a rich phenomenology, ranging from a metal-insulator transition, intriguing thermodynamic behavior, and a putative spin liquid phase at intermediate coupling, ultimately becoming a magnetic
Motivated by the recent discovery of a spin liquid phase for the Hubbard model on the honeycomb lattice at half-filling, we apply both perturbative and non-perturbative techniques to derive effective spin Hamiltonians describing the low-energy physic
The extended Hubbard model with an attractive density-density interaction, positive pair hopping, or both, is shown to host topological phases, with a doubly degenerate entanglement spectrum and interacting edge spins. This constitutes a novel instan
The extended Hubbard model in the atomic limit (AL-EHM) on a square lattice with periodic boundary conditions is studied with use of the Monte Carlo (MC) method. Within the grand canonical ensemble the phase and order-order boundaries for charge orde
By using a state of art tensor network state method, we study the ground-state phase diagram of an extended Bose-Hubbard model on the square lattice with frustrated next-nearest neighboring tunneling. In the hardcore limit, tunneling frustration stab