ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Entity Resolution Using Probabilistic Signatures on Parallel Databases

135   0   0.0 ( 0 )
 نشر من قبل Yuhang Zhang
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate and efficient entity resolution is an open challenge of particular relevance to intelligence organisations that collect large datasets from disparate sources with differing levels of quality and standard. Starting from a first-principles formulation of entity resolution, this paper presents a novel Entity Resolution algorithm that introduces a data-driven blocking and record-linkage technique based on the probabilistic identification of entity signatures in data. The scalability and accuracy of the proposed algorithm are evaluated using benchmark datasets and shown to achieve state-of-the-art results. The proposed algorithm can be implemented simply on modern parallel databases, which allows it to be deployed with relative ease in large industrial applications.



قيم البحث

اقرأ أيضاً

Probabilistic databases play a crucial role in the management and understanding of uncertain data. However, incorporating probabilities into the semantics of incomplete databases has posed many challenges, forcing systems to sacrifice modeling power, scalability, or restrict the class of relational algebra formula under which they are closed. We propose an alternative approach where the underlying relational database always represents a single world, and an external factor graph encodes a distribution over possible worlds; Markov chain Monte Carlo (MCMC) inference is then used to recover this uncertainty to a desired level of fidelity. Our approach allows the efficient evaluation of arbitrary queries over probabilistic databases with arbitrary dependencies expressed by graphical models with structure that changes during inference. MCMC sampling provides efficiency by hypothesizing {em modifications} to possible worlds rather than generating entire worlds from scratch. Queries are then run over the portions of the world that change, avoiding the onerous cost of running full queries over each sampled world. A significant innovation of this work is the connection between MCMC sampling and materialized view maintenance techniques: we find empirically that using view maintenance techniques is several orders of magnitude faster than naively querying each sampled world. We also demonstrate our systems ability to answer relational queries with aggregation, and demonstrate additional scalability through the use of parallelization.
132 - Ye Yuan , Guoren Wang , Lei Chen 2012
Many studies have been conducted on seeking the efficient solution for subgraph similarity search over certain (deterministic) graphs due to its wide application in many fields, including bioinformatics, social network analysis, and Resource Descript ion Framework (RDF) data management. All these works assume that the underlying data are certain. However, in reality, graphs are often noisy and uncertain due to various factors, such as errors in data extraction, inconsistencies in data integration, and privacy preserving purposes. Therefore, in this paper, we study subgraph similarity search on large probabilistic graph databases. Different from previous works assuming that edges in an uncertain graph are independent of each other, we study the uncertain graphs where edges occurrences are correlated. We formally prove that subgraph similarity search over probabilistic graphs is #P-complete, thus, we employ a filter-and-verify framework to speed up the search. In the filtering phase,we develop tight lower and upper bounds of subgraph similarity probability based on a probabilistic matrix index, PMI. PMI is composed of discriminative subgraph features associated with tight lower and upper bounds of subgraph isomorphism probability. Based on PMI, we can sort out a large number of probabilistic graphs and maximize the pruning capability. During the verification phase, we develop an efficient sampling algorithm to validate the remaining candidates. The efficiency of our proposed solutions has been verified through extensive experiments.
In the field of database deduplication, the goal is to find approximately matching records within a database. Blocking is a typical stage in this process that involves cheaply finding candidate pairs of records that are potential matches for further processing. We present here Hashed Dynamic Blocking, a new approach to blocking designed to address datasets larger than those studied in most prior work. Hashed Dynamic Blocking (HDB) extends Dynamic Blocking, which leverages the insight that rare matching values and rare intersections of values are predictive of a matching relationship. We also present a novel use of Locality Sensitive Hashing (LSH) to build blocking key values for huge databases with a convenient configuration to control the trade-off between precision and recall. HDB achieves massive scale by minimizing data movement, using compact block representation, and greedily pruning ineffective candidate blocks using a Count-min Sketch approximate counting data structure. We benchmark the algorithm by focusing on real-world datasets in excess of one million rows, demonstrating that the algorithm displays linear time complexity scaling in this range. Furthermore, we execute HDB on a 530 million row industrial dataset, detecting 68 billion candidate pairs in less than three hours at a cost of $307 on a major cloud service.
Entity resolution (ER) is the problem of identifying and merging records that refer to the same real-world entity. In many scenarios, raw records are stored under heterogeneous environment. Specifically, the schemas of records may differ from each ot her. To leverage such records better, most existing work assume that schema matching and data exchange have been done to convert records under different schemas to those under a predefined schema. However, we observe that schema matching would lose information in some cases, which could be useful or even crucial to ER. To leverage sufficient information from heterogeneous sources, in this paper, we address several challenges of ER on heterogeneous records and show that none of existing similarity metrics or their transformations could be applied to find similar records under heterogeneous settings. Motivated by this, we design the similarity function and propose a novel framework to iteratively find records which refer to the same entity. Regarding efficiency, we build an index to generate candidates and accelerate similarity computation. Evaluations on real-world datasets show the effectiveness and efficiency of our methods.
Entity Resolution (ER) aims to identify whether two tuples refer to the same real-world entity and is well-known to be labor-intensive. It is a prerequisite to anomaly detection, as comparing the attribute values of two matched tuples from two differ ent datasets provides one effective way to detect anomalies. Existing ER approaches, due to insufficient feature discovery or error-prone inherent characteristics, are not able to achieve stable performance. In this paper, we present CollaborER, a self-supervised entity resolution framework via multi-features collaboration. It is capable of (i) obtaining reliable ER results with zero human annotations and (ii) discovering adequate tuples features in a fault-tolerant manner. CollaborER consists of two phases, i.e., automatic label generation (ALG) and collaborative ER training (CERT). In the first phase, ALG is proposed to generate a set of positive tuple pairs and a set of negative tuple pairs. ALG guarantees the high quality of the generated tuples and hence ensures the training quality of the subsequent CERT. In the second phase, CERT is introduced to learn the matching signals by discovering graph features and sentence features of tuples collaboratively. Extensive experimental results over eight real-world ER benchmarks show that CollaborER outperforms all the existing unsupervised ER approaches and is comparable or even superior to the state-of-the-art supervised ER methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا