ﻻ يوجد ملخص باللغة العربية
We endow the set of probability measures on a weighted graph with a Monge--Kantorovich metric, induced by a function defined on the set of vertices. The graph is assumed to have $n$ vertices and so, the boundary of the probability simplex is an affine $(n-2)$--chain. Characterizing the geodesics of minimal length which may intersect the boundary, is a challenge we overcome even when the endpoints of the geodesics dont share the same connected components. It is our hope that this work would be a preamble to the theory of Mean Field Games on graphs.
We give new examples and describe the complete lists of all measures on the set of countable homogeneous universal graphs and $K_s$-free homogeneous universal graphs (for $sgeq 3$) that are invariant with respect to the group of all permutations of t
The upper and lower Assouad dimensions of a metric space are local variants of the box dimensions of the space and provide quantitative information about the `thickest and `thinnest parts of the set. Less extre
In this paper, we give a necessary and sufficient condition for a graphical strip in the Heisenberg group $mathbb{H}$ to be area-minimizing in the slab ${-1<x<1}$. We show that our condition is necessary by introducing a family of deformations of gra
In this article we show how ideas, methods and results from optimal transportation can be used to study various aspects of the stationary measuresof Iterated Function Systems equipped with a probability distribution. We recover a classical existence
When minimal length uncertainty emerging from generalized uncertainty principle (GUP) is thoughtfully implemented, it is of great interest to consider its impacts on {it gravitational} Einstein field equations (gEFE) and to try to find out whether co