ﻻ يوجد ملخص باللغة العربية
We reconsider the Schroder-Siegel problem of conjugating an analytic map in $mathbb{C}$ in the neighborhood of a fixed point to its linear part, extending it to the case of dimension $n>1$. Assuming a condition which is equivalent to Brunos one on the eigenvalues $lambda_1,ldots,lambda_n$ of the linear part we show that the convergence radius $rho$ of the conjugating transformation satisfies $ln rho(lambda )geq -CGamma(lambda)+C$ with $Gamma(lambda)$ characterizing the eigenvalues $lambda$, a constant $C$ not depending on $lambda$ and $C=1$. This improves the previous results for $n>1$, where the known proofs give $C=2$. We also recall that $C=1$ is known to be the optimal value for $n=1$.
We revisit the relegation algorithm by Deprit et al. (Celest. Mech. Dyn. Astron. 79:157-182, 2001) in the light of the rigorous Nekhoroshevs like theory. This relatively recent algorithm is nowadays widely used for implementing closed form analytic p
In this paper we prove stable determination of an inverse boundary value problem associated to a magnetic Schrodinger operator assuming that the magnetic and electric potentials are essentially bounded and the magnetic potentials admit a Holder-type modulus of continuity in the sense of $L^2$.
We obtain spectral estimates for the iterations of Ruelle operator $L_{f + (a + i b)tau + (c + i d) g}$ with two complex parameters and H{o}lder functions $f,: g$ generalizing the case $Pr(f) =0$ studied in [PeS2]. As an application we prove a sharp
In this article, we study the persistence of properties of a given classical deter-ministic dierential equation under a stochastic perturbation of two distinct forms: external and internal. The rst case corresponds to add a noise term to a given equa
In this paper, we show that there is a Cantor set of initial conditions in the planar four-body problem such that all four bodies escape to infinity in a finite time, avoiding collisions. This proves the Painlev{e} conjecture for the four-body case,