ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable transmittance in anisotropic 2D materials

125   0   0.0 ( 0 )
 نشر من قبل Andreas Sinner
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A uniaxial strain applied to graphene-like materials moves the Dirac nodes along the boundary of the Brillouin zone. An extreme case is the merging of the Dirac node positions to a single degenerate spectral node which gives rise to a new topological phase. Then isotropic Dirac nodes are replaced by a node with a linear behavior in one and a parabolic behavior in the other direction. This anisotropy influences substantially the optical properties. We propose a method to determine characteristic spectral and transport properties in black phosphorus layers which were recently studied by several groups with angle-resolved photoemission spectroscopy, and discuss how the transmittance, the reflectance and the optical absorption of this material can be tuned. In particular, we demonstrate that the transmittance of linearly polarized incident light varies from nearly 0% to almost 100% in the microwave and far-infrared regime.



قيم البحث

اقرأ أيضاً

Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on-the-spot by gate doping, enabling hyperbolic beams reflection, refraction and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.
We explore the far-field scattering properties of anisotropic 2D materials in ribbon array configuration. Our study reveals the plasmon-enhanced linear birefringence in these ultrathin metasurfaces, where linearly polarized incident light can be scat tered into its orthogonal polarization or be converted into circular polarized light. We found wide modulation in both amplitude and phase of the scattered light via tuning the operating frequency or materials anisotropy and develop models to explain the observed scattering behavior.
Optical spectroscopy techniques such as differential reflectance and transmittance have proven to be very powerful techniques to study 2D materials. However, a thorough description of the experimental setups needed to carry out these measurements is lacking in the literature. We describe a versatile optical microscope setup to carry out differential reflectance and transmittance spectroscopy in 2D materials with a lateral resolution of ~1 micron in the visible and near-infrared part of the spectrum. We demonstrate the potential of the presented setup to determine the number of layers of 2D materials and to characterize their fundamental optical properties such as excitonic resonances. We illustrate its performance by studying mechanically exfoliated and chemical vapor-deposited transition metal dichalcogenide samples.
Low-symmetry 2D materials---such as ReS$_2$ and ReSe$_2$ monolayers, black phosphorus monolayers, group-IV monochalcogenide monolayers, borophene, among others---have more complex atomistic structures than the honeycomb lattices of graphene, hexagona l boron nitride, and transition metal dichalcogenides. The reduced symmetries of these emerging materials give rise to inhomogeneous electron, optical, valley, and spin responses, as well as entirely new properties such as ferroelasticity, ferroelectricity, magnetism, spin-wave phenomena, large nonlinear optical properties, photogalvanic effects, and superconductivity. Novel electronic topological properties, nonlinear elastic properties, and structural phase transformations can also take place due to low symmetry. The Beyond Graphene: Low-Symmetry and Anisotropic 2D Materials Special Topic was assembled to highlight recent experimental and theoretical research on these emerging materials.
The interest in two-dimensional and layered materials continues to expand, driven by the compelling properties of individual atomic layers that can be stacked and/or twisted into synthetic heterostructures. The plethora of electronic properties as we ll as the emergence of many different quasiparticles, including plasmons, polaritons, trions and excitons with large, tunable binding energies that all can be controlled and modulated through electrical means has given rise to many device applications. In addition, these materials exhibit both room-temperature spin and valley polarization, magnetism, superconductivity, piezoelectricity that are intricately dependent on the composition, crystal structure, stacking, twist angle, layer number and phases of these materials. Initial results on graphene exfoliated from single bulk crystals motivated the development of wide-area, high purity synthesis and heterojunctions with atomically clean interfaces. Now by opening this design space to new synthetic two-dimensional materials beyond graphene, it is possible to explore uncharted opportunities in designing novel heterostructures for electrical tunable devices. To fully reveal the emerging functionalities and opportunities of these atomically thin materials in practical applications, this review highlights several representative and noteworthy research directions in the use of electrical means to tune these aforementioned physical and structural properties, with an emphasis on discussing major applications of beyond graphene 2D materials in tunable devices in the past few years and an outlook of what is to come in the next decade.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا