ﻻ يوجد ملخص باللغة العربية
We study the electroweak phase transition in the alignment limit of the CP-conserving two-Higgs-doublet model (2HDM) of Type I and Type II. The effective potential is evaluated at one-loop, where the thermal potential includes Daisy corrections and is reliably approximated by means of a sum of Bessel functions. Both 1-stage and 2-stage electroweak phase transitions are shown to be possible, depending on the pattern of the vacuum development as the Universe cools down. For the 1-stage case focused on in this paper, we analyze the properties of phase transition and discover that the field value of the electroweak symmetry breaking vacuum at the critical temperature at which the first order phase transition occurs is largely correlated with the vacuum depth of the 1-loop potential at zero temperature. We demonstrate that a strong first order electroweak phase transition (SFOEWPT) in the 2HDM is achievable and establish benchmark scenarios leading to different testable signatures at colliders. In addition, we verify that an enhanced triple Higgs coupling (including loop corrections) is a typical feature of the SFOPT driven by the additional doublet. As a result, SFOEWPT might be able to be probed at the LHC and future lepton colliders through Higgs pair production.
We study $R^2$-Higgs inflation in a model with two Higgs doublets. The context is the general two Higgs doublet model where the Higgs sector of the Standard Model is extended by an additional Higgs doublet. We first discuss the required inflationary
We consider a three Higgs doublet model with an $S_3$ symmetry in which beside the SM-like doublet there are two fermiophobic doublets. Due to the new charged scalars there is an enhancement in the two-photon decay while the other channels have the s
We study some implications of the presence of two inert scalar doublets which are charged under a dark Abelian gauge symmetry. Specifically, we investigate the effects of the new scalars on oblique electroweak parameters and on the interactions of th
We investigate the potential stochastic gravitational waves from first-order electroweak phase transitions in a model with pseudo-Nambu-Goldstone dark matter and two Higgs doublets. The dark matter candidate can naturally evade direct detection bound
We use sampling techniques to find robust constraints on the masses of a possible fourth sequential fermion generation from electroweak oblique variables. We find that in the case of a light (115 GeV) Higgs from a single electroweak symmetry breaking