ﻻ يوجد ملخص باللغة العربية
Magnonics is gaining momentum as an emerging technology for information processing. The wave character and Joule heating-free propagation of spin-waves hold promises for highly efficient analog computing platforms, based on integrated magnonic circuits. Miniaturization is a key issue but, so far, only few examples of manipulation of spin-waves in nanostructures have been demonstrated, due to the difficulty of tailoring the nanoscopic magnetic properties with conventional fabrication techniques. In this Letter, we demonstrate an unprecedented degree of control in the manipulation of spin-waves at the nanoscale by using patterned reconfigurable spin-textures. By space and time-resolved scanning transmission X-ray microscopy imaging, we provide direct evidence for the channeling and steering of propagating spin-waves in arbitrarily shaped nanomagnonic waveguides based on patterned domain walls, with no need for external magnetic fields or currents. Furthermore, we demonstrate a prototypic nanomagnonic circuit based on two converging waveguides, allowing for the tunable spatial superposition and interaction of confined spin-waves modes.
Controlling magnetism in low dimensional materials is essential for designing devices that have feature sizes comparable to several critical length scales that exploit functional spin textures, allowing the realization of low-power spintronic and mag
Experimental and theoretical progress toward quantum computation with spins in quantum dots (QDs) is reviewed, with particular focus on QDs formed in GaAs heterostructures, on nanowire-based QDs, and on self-assembled QDs. We report on a remarkable e
Strongly-interacting artificial spin systems are moving beyond mimicking naturally-occuring materials to find roles as versatile functional platforms, from reconfigurable magnonics to designer magnetic metamaterials. Typically artificial spin systems
The recent discovery of higher-order topological insulators (HOTIs) has significantly extended our understanding of topological phases of matter. Here, we predict that second-order corner states can emerge in the dipolar-coupled dynamics of topologic
Spin Waves(SWs) enable the realization of energy efficient circuits as they propagate and interfere within waveguides without consuming noticeable energy. However, SW computing can be even more energy efficient by taking advantage of the approximate