The nonlinear heat equation involving highly singular initial values and new blowup and life span results


الملخص بالإنكليزية

In this paper we prove local existence of solutions to the nonlinear heat equation $u_t = Delta u +a |u|^alpha u, ; tin(0,T),; x=(x_1,,cdots,, x_N)in {mathbb R}^N,; a = pm 1,; alpha>0;$ with initial value $u(0)in L^1_{rm{loc}}left({mathbb R}^Nsetminus{0}right)$, anti-symmetric with respect to $x_1,; x_2,; cdots,; x_m$ and $|u(0)|leq C(-1)^mpartial_{1}partial_{2}cdot cdot cdot partial_{m}(|x|^{-gamma})$ for $x_1>0,; cdots,; x_m>0,$ where $C>0$ is a constant, $min {1,; 2,; cdots,; N},$ $0<gamma<N$ and $0<alpha<2/(gamma+m).$ This gives a local existence result with highly singular initial values. As an application, for $a=1,$ we establish new blowup criteria for $0<alphaleq 2/(gamma+m)$, including the case $m=0.$ Moreover, if $(N-4)alpha<2,$ we prove the existence of initial values $u_0 = lambda f,$ for which the resulting solution blows up in finite time $T_{max}(lambda f),$ if $lambda>0$ is sufficiently small. We also construct blowing up solutions with initial data $lambda_n f$ such that $lambda_n^{[({1over alpha}-{gamma+mover 2})^{-1}]}T_{max}(lambda_n f)$ has different finite limits along different sequences $lambda_nto 0$. Our result extends the known small lambda blow up results for new values of $alpha$ and a new class of initial data.

تحميل البحث