ترغب بنشر مسار تعليمي؟ اضغط هنا

THESEUS: a key space mission concept for Multi-Messenger Astrophysics

64   0   0.0 ( 0 )
 نشر من قبل Giulia Stratta
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent discovery of the electromagnetic counterpart of the gravitational wave source GW170817, has demonstrated the huge informative power of multi-messenger observations. During the next decade the nascent field of multi-messenger astronomy will mature significantly. Around 2030, third generation gravitational wave detectors will be roughly ten times more sensitive than the current ones. At the same time, neutrino detectors currently upgrading to multi km^3 telescopes, will include a 10 km^3 facility in the Southern hemisphere that is expected to be operational around 2030. In this review, we describe the most promising high frequency gravitational wave and neutrino sources that will be detected in the next two decades. In this context, we show the important role of the Transient High Energy Sky and Early Universe Surveyor (THESEUS), a mission concept proposed to ESA by a large international collaboration in response to the call for the Cosmic Vision Programme M5 missions. THESEUS aims at providing a substantial advancement in early Universe science as well as playing a fundamental role in multi-messenger and time-domain astrophysics, operating in strong synergy with future gravitational wave and neutrino detectors as well as major ground- and space-based telescopes. This review is an extension of the THESEUS white paper (Amati et al. 2017), also in light of the discovery of GW170817/GRB170817A that was announced on October 16th, 2017.



قيم البحث

اقرأ أيضاً

Multi-messenger astrophysics is becoming a major avenue to explore the Universe, with the potential to span a vast range of redshifts. The growing synergies between different probes is opening new frontiers, which promise profound insights into sever al aspects of fundamental physics and cosmology. In this context, THESEUS will play a central role during the 2030s in detecting and localizing the electromagnetic counterparts of gravitational wave and neutrino sources that the unprecedented sensitivity of next generation detectors will discover at much higher rates than the present. Here, we review the most important target signals from multi-messenger sources that THESEUS will be able to detect and characterize, discussing detection rate expectations and scientific impact.
96 - L. Amati , P.T. OBrien , D. Gotz 2021
THESEUS, one of the two space mission concepts being studied by ESA as candidates for next M5 mission within its Comsic Vision programme, aims at fully exploiting Gamma-Ray Bursts (GRB) to solve key questions about the early Universe, as well as beco ming a cornerstone of multi-messenger and time-domain astrophysics. By investigating the first billion years of the Universe through high-redshift GRBs, THESEUS will shed light on the main open issues in modern cosmology, such as the population of primordial low mass and luminosity galaxies, sources and evolution of cosmic re-ionization, SFR and metallicity evolution up to the cosmic dawn and across Pop-III stars. At the same time, the mission will provide a substantial advancement of multi-messenger and time-domain astrophysics by enabling the identification, accurate localisation and study of electromagnetic counterparts to sources of gravitational waves and neutrinos, which will be routinely detected in the late 20s and early 30s by the second and third generation Gravitational Wave (GW) interferometers and future neutrino detectors, as well as of all kinds of GRBs and most classes of other X/gamma-ray transient sources. In all these cases, THESEUS will provide great synergies with future large observing facilities in the multi-messenger domain. A Guest Observer programme, comprising Target of Opportunity (ToO) observations, will expand the science return of the mission, to include, e.g., solar system minor bodies, exoplanets, and AGN.
The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to observe cosmic neutrinos (CNs) above 20 PeV and ultra-high energy cosmic rays (UHECRs) above 20 EeV over the full sky. The POEMMA mission calls for two identical satellites fly ing in loose formation, each comprised of a 4-meter wide field-of-view (45 degrees) Schmidt photometer. The hybrid focal surface includes a fast (1 ${mu}$s) ultraviolet camera for fluorescence observations and an ultrafast (10 ns) optical camera for Cherenkov observations. POEMMA will provide new multi-messenger windows onto the most energetic events in the universe, enabling the study of new astrophysics and particle physics at these otherwise inaccessible energies.
61 - Kathrin Egberts 2020
Multi-messenger astronomy has experienced an explosive development in the past few years. While not being a particularly young field, it has recently attracted a lot of attention by several major discoveries and unprecedented observation campaigns co vering the entity of the electromagnetic spectrum as well as observations of cosmic rays, neutrinos, and gravitational waves. The exploration of synergies is in full steam and requires close cooperation between different instruments. Here I give an overview over the subject of multi-messenger astronomy and its virtues compared to classical single messenger observations, present the recent break throughs of the field, and discuss some of its organisational and technical challenges.
91 - L. Amati , P. OBrien , D. Goetz 2017
THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique com bination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5-1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift $sim$10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late 20s / early 30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا