ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental implementation of fully controlled dephasing dynamics and synthetic spectral densities

341   0   0.0 ( 0 )
 نشر من قبل J. Piilo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Engineering, controlling, and simulating quantum dynamics is a strenuous task. However, these techniques are crucial to develop quantum technologies, preserve quantum properties, and engineer decoherence. Earlier results have demonstrated reservoir engineering, construction of a quantum simulator for Markovian open systems, and controlled transition from Markovian to non-Markovian regime. Dephasing is an ubiquitous mechanism to degrade the performance of quantum computers. However, a fully controllable all-purpose quantum simulator for generic dephasing is still missing. Here we demonstrate full experimental control of dephasing allowing us to implement arbitrary decoherence dynamics of a qubit. As examples, we use a photon to simulate the dynamics of a qubit coupled to an Ising chain in a transverse field and also demonstrate a simulation of non-positive dynamical map. Our platform opens the possibility to simulate dephasing of any physical system and study fundamental questions on open quantum systems.



قيم البحث

اقرأ أيضاً

The depolarizing quantum operation plays an important role in studying the quantum noise effect and implementing general quantum operations. In this work, we report a scheme which implements a fully controllable input-state independent depolarizing q uantum operation for a photonic polarization qubit.
We report on the first experimental realization of optimal linear-optical controlled phase gates for arbitrary phases. The realized scheme is entirely flexible in that the phase shift can be tuned to any given value. All such controlled phase gates a re optimal in the sense that they operate at the maximum possible success probabilities that are achievable within the framework of any postselected linear-optical implementation. The quantum gate is implemented using bulk optical elements and polarization encoding of qubit states. We have experimentally explored the remarkable observation that the optimum success probability is not monotone in the phase.
Hardware efficient transpilation of quantum circuits to a quantum devices native gateset is essential for the execution of quantum algorithms on noisy quantum computers. Typical quantum devices utilize a gateset with a single two-qubit Clifford entan gling gate per pair of coupled qubits, however, in some applications access to a non-Clifford two-qubit gate can result in more optimal circuit decompositions and also allows more flexibility in optimizing over noise. We demonstrate calibration of a low error non-Clifford Controlled-$frac{pi}{2}$ phase (CS) gate on a cloud based IBM Quantum computing using the Qiskit Pulse framework. To measure the gate error of the calibrated CS gate we perform non-Clifford CNOT-Dihedral interleaved randomized benchmarking. We are able to obtain a gate error of $5.9(7) times 10^{-3}$ at a gate length 263 ns, which is close to the coherence limit of the associated qubits, and lower error than the backends standard calibrated CNOT gate.
Recently, we have theoretically proposed and experimentally demonstrated an exact and efficient quantum simulation of photosynthetic light harvesting in nuclear magnetic resonance (NMR), cf. B. X. Wang, textit{et al.} npj Quantum Inf.~textbf{4}, 52 ( 2018). In this paper, we apply this approach to simulate the open quantum dynamics in various photosynthetic systems with different Hamiltonians. By numerical simulations, we show that for Drude-Lorentz spectral density the dimerized geometries with strong couplings within the donor and acceptor clusters respectively exhibit significantly-improved efficiency. Based on the optimal geometry, we also demonstrate that the overall energy transfer can be further optimized when the energy gap between the donor and acceptor clusters matches the peak of the spectral density. Moreover, by exploring the quantum dynamics for different types of spectral densities, e.g. Ohmic, sub-Ohmic, and super-Ohmic spectral densities, we show that our approach can be generalized to effectively simulate open quantum dynamics for various Hamiltonians and spectral densities. Because $log_{2}N$ qubits are required for quantum simulation of an $N$-dimensional quantum system, this quantum simulation approach can greatly reduce the computational complexity compared with popular numerically-exact methods.
350 - Chun-wang Wu , Jie Zhang , Yi Xie 2018
In this paper, we explore the possibilities of realizing weak value amplification (WVA) using purely atomic degrees of freedom. Our scheme identifies the internal electronic states and external motional states of a single trapped $^{40}$Ca$^+$ ion as the system degree and pointer degree respectively, and their controllable weak coupling is provided by a bichromatic light field. In our experimental demonstration, by performing appropriate postselection on the internal states, a position displacement of 4 angstroms (in phase space) of the trapped ion is amplified to 10 nanometers. The sensitivity of the amplification effect to the relative phase of the quantum state is also demonstrated. The high operational flexibility of this procedure allows fully exploration of the peculiarities of WVA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا