ﻻ يوجد ملخص باللغة العربية
We identify all symmetry superalgebras $mathfrak{g}$ of near horizon geometries of black holes with a Killing horizon, assuming the solution is smooth and that the spatial cross section of the event horizon is compact without boundary. This includes all warped AdS$_2$ backgrounds with the most general allowed fluxes in 10- and 11-dimensional supergravities. If the index of a particular Dirac operator vanishes, we find that the even symmetry subalgebra decomposes as $mathfrak{g}_0=mathfrak{sl}(2,mathbb{R})oplus mathfrak{t}_0$, where $mathfrak{t}_0/mathfrak{c}$ is the Lie algebra of a group that acts transitively and effectively on spheres, and $mathfrak{c}$ is the center of $mathfrak{g}$. If the Dirac operator index does not vanish, then the symmetry superalgebra is nilpotent with one even generator. We also demonstrate that there are no near horizon geometries, and also therefore no warped AdS$_2$ backgrounds, in 10- and 11-dimensions that preserve more than 16 supersymmetries.
We present all the symmetry superalgebras $mathfrak{g}$ of all warped AdS$_ktimes_w M^{d-k}$, $k>2$, flux backgrounds in $d=10, 11$ dimensions preserving any number of supersymmetries. First we give the conditions for $mathfrak{g}$ to decompose into
We study the Complexity=Volume conjecture for Warped AdS$_3$ black holes. We compute the spatial volume of the Einstein-Rosen bridge and we find that its growth rate is proportional to the Hawking temperature times the Bekenstein-Hawking entropy. Thi
The Complexity=Action conjecture is studied for black holes in Warped AdS$_3$ space, realized as solutions of Einstein gravity plus matter. The time dependence of the action of the Wheeler-DeWitt patch is investigated, both for the non-rotating and t
We present a new vacuum solution of Einsteins equations describing the near horizon region of two neutral, extreme (zero-temperature), co-rotating, non-identical Kerr black holes. The metric is stationary, asymptotically near horizon extremal Kerr (N
We construct several classes of worldvolume effective actions for black holes by integrating out spatial sections of the worldvolume geometry of asymptotically flat black branes. This provides a generalisation of the blackfold approach for higher-dim