ﻻ يوجد ملخص باللغة العربية
In this paper, we construct toric data of moduli space of quasi maps of degree $d$ from P^{1} with two marked points to weighted projective space P(1.1,1,3). With this result, we prove that the moduli space is a compact toric orbifold. We also determine its Chow ring. Moreover, we give a proof of the conjecture proposed by Jinzenji that a series of intersection numbers of the moduli spaces coincides with expansion coefficients of inverse function of -log(j(tau)).
This paper considers the moduli spaces (stacks) of parabolic bundles (parabolic logarithmic flat bundles with given spectrum, parabolic regular Higgs bundles) with rank 2 and degree 1 over $mathbb{P}^1$ with five marked points. The stratification str
We study a space of genus $g$ stable, $n$-marked tropical curves with total edge length $1$. Its rational homology is identified both with top-weight cohomology of the complex moduli space $M_{g,n}$ and with the homology of a marked version of Kontse
We classify compact Riemann surfaces of genus $g$, where $g-1$ is a prime $p$, which have a group of automorphisms of order $rho(g-1)$ for some integer $rhoge 1$, and determine isogeny decompositions of the corresponding Jacobian varieties. This exte
Let $mathcal{M}(n,m;F bp^n)$ be the configuration space of $m$-tuples of pairwise distinct points in $F bp^n$, that is, the quotient of the set of $m$-tuples of pairwise distinct points in $F bp^n$ with respect to the diagonal action of ${rm PU}(1,n;
This is an appendix to the recent paper of Favacchio and Guardo. In these notes we describe explicitly a minimal bigraded free resolution and the bigraded Hilbert function of a set of 3 fat points whose support is an almost complete intersection (ACI