ترغب بنشر مسار تعليمي؟ اضغط هنا

The fourth smallest Hamming weight in the code of the projective plane over $mathbb{Z}/p mathbb{Z}$

61   0   0.0 ( 0 )
 نشر من قبل Bhaskar Bagchi
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Bhaskar Bagchi




اسأل ChatGPT حول البحث

Let $p$ be a prime and let $C_p$ denote the $p$-ary code of the projective plane over ${mathbb Z}/pmathbb{Z}$. It is well known that the minimum weight of non-zero words in $C_p$ is $p+1$, and Chouinard proved that, for $p geq 3$, the second and third minimum weights are $2p$ and $2p+1$. In 2007, Fack et. al. determined, for $pgeq 5$, all words of $C_p$ of these three weights. In this paper we recover all these results and also prove that, for $p geq 5$, the fourth minimum weight of $C_p$ is $3p-3$. The problem of determining all words of weight $3p-3$ remains open.



قيم البحث

اقرأ أيضاً

We establish an uncertainty principle for functions $f: mathbb{Z}/p rightarrow mathbb{F}_q$ with constant support (where $p mid q-1$). In particular, we show that for any constant $S > 0$, functions $f: mathbb{Z}/p rightarrow mathbb{F}_q$ for which $ |text{supp}; {f}| = S$ must satisfy $|text{supp}; hat{f}| = (1 - o(1))p$. The proof relies on an application of Szemeredis theorem; the celebrated improvements by Gowers translate into slightly stronger statements permitting conclusions for functions possessing slowly growing support as a function of $p$.
86 - John Holler , Igor Kriz 2020
This note contains a generalization to $p>2$ of the authors previous calculations of the coefficients of $(mathbb{Z}/2)^n$-equivariant ordinary cohomology with coefficients in the constant $mathbb{Z}/2$-Mackey functor. The algberaic results by S.Kriz allow us to calculate the coefficients of the geometric fixed point spectrum $Phi^{(mathbb{Z}/p)^n}Hmathbb{Z}/p$, and more generally, the $mathbb{Z}$-graded coefficients of the localization of $Hmathbb{Z}/p_{(mathbb{Z}/p)^n}$ by inverting any chosen set of embeddings $S^0rightarrow S^{alpha_i}$ where $alpha_i$ are non-trivial irreducible representations. We also calculate the $RO(G)^+$-graded coefficients of $Hmathbb{Z}/p_{(mathbb{Z}/p)^n}$, which means the cohomology of a point indexed by an actual (not virtual) representation. (This is the non-derived part, which has a nice algebraic description.)
For a positive integer $g$, let $mathrm{Sp}_{2g}(R)$ denote the group of $2g times 2g$ symplectic matrices over a ring $R$. Assume $g ge 2$. For a prime number $ell$, we give a self-contained proof that any closed subgroup of $mathrm{Sp}_{2g}(mathbb{ Z}_ell)$ which surjects onto $mathrm{Sp}_{2g}(mathbb{Z}/ellmathbb{Z})$ must in fact equal all of $mathrm{Sp}_{2g}(mathbb{Z}_ell)$. The result and the method of proof are both motivated by group-theoretic considerations that arise in the study of Galois representations associated to abelian varieties.
In this note we study and obtain factorization theorems for colorings of matrices and Grassmannians over $mathbb{R}$ and ${mathbb{C}}$, which can be considered metr
Projective Reed-Muller codes correspond to subcodes of the Reed-Muller code in which the polynomials being evaluated to yield codewords, are restricted to be homogeneous. The Generalized Hamming Weights (GHW) of a code ${cal C}$, identify for each di mension $ u$, the smallest size of the support of a subcode of ${cal C}$ of dimension $ u$. The GHW of a code are of interest in assessing the vulnerability of a code in a wiretap channel setting. It is also of use in bounding the state complexity of the trellis representation of the code. In prior work by the same authors, a code-shortening algorithm was employed to derive upper bounds on the GHW of binary projective, Reed-Muller (PRM) codes. In the present paper, we derive a matching lower bound by adapting the proof techniques used originally for Reed-Muller (RM) codes by Wei. This results in a characterization of the GHW hierarchy of binary PRM codes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا