ترغب بنشر مسار تعليمي؟ اضغط هنا

The SPHERE data center: a reference for high contrast imaging processing

73   0   0.0 ( 0 )
 نشر من قبل Philippe Delorme
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The objective of the SPHERE Data Center is to optimize the scientific return of SPHERE at the VLT, by providing optimized reduction procedures, services to users and publicly available reduced data. This paper describes our motivation, the implementation of the service (partners, infrastructure and developments), services, description of the on-line data, and future developments. The SPHERE Data Center is operational and has already provided reduced data with a good reactivity to many observers. The first public reduced data have been made available in 2017. The SPHERE Data Center is gathering a strong expertise on SPHERE data and is in a very good position to propose new reduced data in the future, as well as improved reduction procedures.



قيم البحث

اقرأ أيضاً

We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contras t data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompass- ing pre- and post-processing algorithms, potential sources position and flux estimation, and sensitivity curves generation. Among the reference point-spread function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithm capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization (NMF), which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP we investigated the presence of additional companions around HR8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github.com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.
The direct detection and characterization of planetary and substellar companions at small angular separations is a rapidly advancing field. Dedicated high-contrast imaging instruments deliver unprecedented sensitivity, enabling detailed insights into the atmospheres of young low-mass companions. In addition, improvements in data reduction and PSF subtraction algorithms are equally relevant for maximizing the scientific yield, both from new and archival data sets. We aim at developing a generic and modular data reduction pipeline for processing and analysis of high-contrast imaging data obtained with pupil-stabilized observations. The package should be scalable and robust for future implementations and in particular well suitable for the 3-5 micron wavelength range where typically (ten) thousands of frames have to be processed and an accurate subtraction of the thermal background emission is critical. PynPoint is written in Python 2.7 and applies various image processing techniques, as well as statistical tools for analyzing the data, building on open-source Python packages. The current version of PynPoint has evolved from an earlier version that was developed as a PSF subtraction tool based on PCA. The architecture of PynPoint has been redesigned with the core functionalities decoupled from the pipeline modules. Modules have been implemented for dedicated processing and analysis steps, including background subtraction, frame registration, PSF subtraction, photometric and astrometric measurements, and estimation of detection limits. The pipeline package enables end-to-end data reduction of pupil-stabilized data and supports classical dithering and coronagraphic data sets. As an example, we processed archival VLT/NACO L and M data of beta Pic b and reassessed the planets brightness and position with an MCMC analysis, and we provide a derivation of the photometric error budget.
In this work we explore the possibility of using Recurrence Quantification Analysis (RQA) in astronomical high-contrast imaging to statistically discriminate the signal of faint objects from speckle noise. To this end, we tested RQA on a sequence of high frame rate (1 kHz) images acquired with the SHARK-VIS forerunner at the Large Binocular Telescope. Our tests show promising results in terms of detection contrasts at angular separations as small as $50$ mas, especially when RQA is applied to a very short sequence of data ($2$ s). These results are discussed in light of possible science applications and with respect to other techniques like, for example, Angular Differential Imaging and Speckle-Free Imaging.
We discuss the results of a multi-wavelength differential imaging lab experiment with the High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory. The HCIT combines a Lyot coronagraph with a Xinetics deformable mirror in a vacuum enviro nment to simulate a space telescope in order to test technologies and algorithms for a future exoplanet coronagraph mission. At present, ground based telescopes have achieved significant attenuation of speckle noise using the technique of spectral differential imaging (SDI). We test whether ground-based SDI can be generalized to a non-simultaneous spectral differential imaging technique (NSDI) for a space mission. In our lab experiment, a series of 5 filter images centered around the O2(A) absorption feature at 0.762 um were acquired at nominal contrast values of 10^-6, 10^-7, 10^-8, and 10^-9. Outside the dark hole, single differences of images improve contrast by a factor of ~6. Inside the dark hole, we found significant speckle chromatism as a function of wavelength offset from the nulling wavelength, leading to a contrast degradation by a factor of 7.2 across the entire ~80 nm bandwidth. This effect likely stems from the chromatic behavior of the current occulter. New, less chromatic occulters are currently in development; we expect that these new occulters will resolve the speckle chromatism issue.
METIS is one of the three first-light instruments planned for the ELT, mainly dedicated to high contrast imaging in the mid-infrared. On the SPHERE high-contrast instrument currently installed at the VLT, we observe that one of the main contrast limi tations is the wind driven halo, due to the limited AO running speed with respect to the atmospheric turbulence temporal evolution. From this observation, we extrapolate this signature to the ELT/METIS instrument, which is equipped with a single conjugated adaptive optics system and with several coronagraphic devices. By making use of an analytic AO simulator, we compare the amount of wind driven halo observed with SPHERE and with METIS, under the same turbulence conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا