ﻻ يوجد ملخص باللغة العربية
We prove a tight lower bound on the asymptotic performance ratio $rho$ of the bounded space online $d$-hypercube bin packing problem, solving an open question raised in 2005. In the classic $d$-hypercube bin packing problem, we are given a sequence of $d$-dimensional hypercubes and we have an unlimited number of bins, each of which is a $d$-dimensional unit hypercube. The goal is to pack (orthogonally) the given hypercubes into the minimum possible number of bins, in such a way that no two hypercubes in the same bin overlap. The bounded space online $d$-hypercube bin packing problem is a variant of the $d$-hypercube bin packing problem, in which the hypercubes arrive online and each one must be packed in an open bin without the knowledge of the next hypercubes. Moreover, at each moment, only a constant number of open bins are allowed (whenever a new bin is used, it is considered open, and it remains so until it is considered closed, in which case, it is not allowed to accept new hypercubes). Epstein and van Stee [SIAM J. Comput. 35 (2005), no. 2, 431-448] showed that $rho$ is $Omega(log d)$ and $O(d/log d)$, and conjectured that it is $Theta(log d)$. We show that $rho$ is in fact $Theta(d/log d)$. To obtain this result, we elaborate on some ideas presented by those authors, and go one step further showing how to obtain better (offline) packings of certain special instances for which one knows how many bins any bounded space algorithm has to use. Our main contribution establishes the existence of such packings, for large enough $d$, using probabilistic arguments. Such packings also lead to lower bounds for the prices of anarchy of the selfish $d$-hypercube bin packing game. We present a lower bound of $Omega(d/log d)$ for the pure price of anarchy of this game, and we also give a lower bound of $Omega(log d)$ for its strong price of anarchy.
In the $d$-dimensional hypercube bin packing problem, a given list of $d$-dimensional hypercubes must be packed into the smallest number of hypercube bins. Epstein and van Stee [SIAM J. Comput. 35 (2005)] showed that the asymptotic performance ratio
We consider the file maintenance problem (also called the online labeling problem) in which n integer items from the set {1,...,r} are to be stored in an array of size m >= n. The items are presented sequentially in an arbitrary order, and must be st
Pool block withholding attack is performed among mining pools in digital cryptocurrencies, such as Bitcoin. Instead of mining honestly, pools can be incentivized to infiltrate their own miners into other pools. These infiltrators report partial solut
Vizings celebrated theorem asserts that any graph of maximum degree $Delta$ admits an edge coloring using at most $Delta+1$ colors. In contrast, Bar-Noy, Naor and Motwani showed over a quarter century that the trivial greedy algorithm, which uses $2D
We consider the following online optimization problem. We are given a graph $G$ and each vertex of the graph is assigned to one of $ell$ servers, where servers have capacity $k$ and we assume that the graph has $ell cdot k$ vertices. Initially, $G$ d