ﻻ يوجد ملخص باللغة العربية
We propose a hidden gauged $U(1)_H$ $Z$ model to explain deviations from the Standard Model (SM) values in lepton flavor universality known as $R_K$ and $R_D$ anomalies. The $Z$ only interacts with the SM fermions via their mixing with vector-like doublet fermions after the $U(1)_H$ symmetry breaking, which leads to $b to s mumu$ transition through the $Z^{prime}$ at tree level. Moreover, introducing an additional mediator, inert-Higgs doublet, yields $bto c tau u$ process via charged scalar contribution at tree level. Using flavio package, we scrutinize adequate sizes of the relevant Wilson coefficients to these two processes by taking various flavor observables into account. It is found that significant mixing between the vector-like and the second generation leptons is needed for the $R_K$ anomaly. A possible explanation of the $R_D$ anomaly can also be simultaneously addressed in a motivated situation, where a single scalar operator plays a dominant role, by the successful model parameters for the $R_K$ anomaly.
An additional $U(1)$ gauge interaction is one of promising extensions of the standard model of particle physics. Among others, the $U(1)_{B-L}$ gauge symmetry is particularly interesting because it addresses the origin of Majorana masses of right-han
We propose a one-loop induced neutrino mass model with hidden $U(1)$ gauge symmetry, in which we successfully involve a bosonic dark matter (DM) candidate propagating inside a loop diagram in neutrino mass generation to explain the $e^+e^-$ excess re
We investigate a speculative short-distance force, proposed to explain discrepancies observed between measurements of certain neutral current decays of $B$ hadrons and their Standard Model predictions. The force derives from a spontaneously broken, g
We consider a class of models with gauged U(1)_R symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if t
We explore muon anomalous magnetic moment (muon $g-2$) in a scotogenic neutrino model with a gauged lepton numbers symmetry $U(1)_{mu-tau}$. In this model, a dominant muon $g-2$ contribution comes from not an additional gauge sector but the Yukawa se