ﻻ يوجد ملخص باللغة العربية
We describe a general technique for obtaining provably correct, non-blocking implementations of a large class of tree data structures where pointers are directed from parents to children. Updates are permitted to modify any contiguous portion of the tree atomically. Our non-blocking algorithms make use of the LLX, SCX and VLX primitives, which are multi-word generalizations of the standard LL, SC and VL primitives and have been implemented from single-word CAS. To illustrate our technique, we describe how it can be used in a fairly straightforward way to obtain a non-blocking implementation of a chromatic tree, which is a relaxed variant of a red-black tree. The height of the tree at any time is $O(c+ log n)$, where $n$ is the number of keys and $c$ is the number of updates in progress. We provide an experimental performance analysis which demonstrates that our Java implementation of a chromatic tree rivals, and often significantly outperforms, other leading concurrent dictionaries.
This paper presents the first implementation of a search tree data structure in an asynchronous shared-memory system that provides a wait-free algorithm for executing range queries on the tree, in addition to non-blocking algorithms for Insert, Delet
We define a new set of primitive operations that greatly simplify the implementation of non-blocking data structures in asynchronous shared-memory systems. The new operations operate on a set of Data-records, each of which contains multiple fields. T
In this paper we present the Task-Aware MPI library (TAMPI) that integrates both blocking and non-blocking MPI primitives with task-based programming models. The TAMPI library leverages two new runtime APIs to improve both programmability and perform
We start by summarizing the recently proposed implementation of the first non-blocking concurrent interpolation search tree (C-IST) data structure. We then analyze the individual operations of the C-IST, and show that they are correct and linearizabl
The symmetric sparse matrix-vector multiplication (SymmSpMV) is an important building block for many numerical linear algebra kernel operations or graph traversal applications. Parallelizing SymmSpMV on todays multicore platforms with up to 100 cores