ﻻ يوجد ملخص باللغة العربية
Inductive $k$-independent graphs generalize chordal graphs and have recently been advocated in the context of interference-avoiding wireless communication scheduling. The NP-hard problem of finding maximum-weight induced $c$-colorable subgraphs, which is a generalization of finding maximum independent sets, naturally occurs when selecting $c$ sets of pairwise non-conflicting jobs (modeled as graph vertices). We investigate the parameterized complexity of this problem on inductive $k$-independent graphs. We show that the Independent Set problem is W[1]-hard even on 2-simplicial 3-minoes---a subclass of inductive 2-independent graphs. In contrast, we prove that the more general Maximum $c$-Colorable Subgraph problem is fixed-parameter tractable on edge-wise unions of cluster and chordal graphs, which are 2-simplicial. In both cases, the parameter is the solution size. Aside from this, we survey other graph classes between inductive 1-inductive and inductive 2-inductive graphs with applications in scheduling.
An Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every edge of a graph $G$ at least (resp. exactly) once. This notion was first discussed by Leonhard Euler while solving the famous Seven Bridges of K{o}nigsberg problem in 1736
A graph $G$ is called interval colorable if it has a proper edge coloring with colors $1,2,3,dots$ such that the colors of the edges incident to every vertex of $G$ form an interval of integers. Not all graphs are interval colorable; in fact, quite f
This tutorial review provides a guiding reference to researchers who want to have an overview of the large body of literature about graph spanners. It reviews the current literature covering various research streams about graph spanners, such as diff
Lekkerkerker and Boland characterized the minimal forbidden induced subgraphs for the class of interval graphs. We give a linear-time algorithm to find one in any graph that is not an interval graph. Tucker characterized the minimal forbidden submatr
We show that the number of independent sets in cocomparability graphs can be counted in linear time, as can counting cliques in comparability graphs. By contrast, counting cliques in cocomparabilty graphs and counting independent sets in comparabilit