ﻻ يوجد ملخص باللغة العربية
We present an application of the Extended Stochastic Liouville Equation (ESLE) Phys. Rev. B 95, 125124, which gives an exact solution for the reduced density matrix of an open system surrounded by a harmonic heat bath. This method considers the extended system (the open system and the bath) being thermally equilibrated prior to the action of a time dependent perturbation, as opposed to the usual assumption that system and bath are initially partitioned. This is an exact technique capable of accounting for arbitrary parameter regimes of the model. Here we present our first numerical implementation of the method in the simplest case of a Caldeira-Leggett representation of the bath Hamiltonian, and apply it to a spin-Boson system driven from coupled equilibrium. We observe significant behaviours in both the transient dynamics and asymptotic states of the reduced density matrix not present in the usual approximation.
We point out that superconducting quantum computers are prospective for the simulation of the dynamics of spin models far from equilibrium, including nonadiabatic phenomena and quenches. The important advantage of these machines is that they are prog
We obtain analytically close forms of benchmark quantum dynamics of the collapse and revival (CR), reduced density matrix, Von Neumann entropy, and fidelity for the XXZ central spin problem. These quantities characterize the quantum decoherence and e
We present exact results on a novel kind of emergent random matrix universality that quantum many-body systems at infinite temperature can exhibit. Specifically, we consider an ensemble of pure states supported on a small subsystem, generated from pr
The dynamical behavior of a star network of spins, wherein each of N decoupled spins interact with a central spin through non uniform Heisenberg XX interaction is exactly studied. The time-dependent Schrodinger equation of the spin system model is so
In this work we proof that boson sampling with $N$ particles in $M$ modes is equivalent to short-time evolution with $N$ excitations in an XY model of $2N$ spins. This mapping is efficient whenever the boson bunching probability is small, and errors