ﻻ يوجد ملخص باللغة العربية
We report the analysis result of UV/X-ray emission from AR~Scorpii, which is an intermediate polar (IP) composed of a magnetic white dwarf and a M-type star, with the XMM-Newton data. The X-ray/UV emission clearly shows a large variation over the orbit, and their intensity maximum (or minimum) is located at the superior conjunction (or inferior conjunction) of the M-type star orbit. The hardness ratio of the X-ray emission shows a small variation over the orbital phase, and shows no indication of the absorption by an accretion column. These properties are naturally explained by the emission from the M-type star surface rather than from the accretion column on the WDs star similar to the usual IPs. Beside, the observed X-ray emission also modulates with WDs spin with a pulse fraction of $sim 14%$. The peak position is aligned in the optical/UV/X-ray band. This supports the hypothesis that the electrons in AR~Scorpii are accelerated to a relativistic speed, and emit non-thermal photons via the synchrotron radiation. In the X-ray bands, the evidence of the power-law spectrum is found in the pulsed component, although the observed emission is dominated by the optically thin thermal plasma emissions with several different temperatures. It is considered that the magnetic dissipation/reconnection process on the M-type star surface heats up the plasma to a temperature of several keV, and also accelerates the electrons to the relativistic speed. The relativistic electrons are trapped in the WDs closed magnetic field lines by the magnetic mirror effect. In this model, the observed pulsed component is explained by the emissions from the first magnetic mirror point.
We report a study of the X-ray emission from the white dwarf/M-type star binary system AR Scorpii using archival data taken in 2016-2020. It has been known that the X-ray emission is dominated by the optically thin thermal plasma emission, and its fl
We study linear polarization of optical emission from white dwarf (WD) binary system AR~Scorpii. The optical emission from this binary is modulating with the beat frequency of the system, and it is highly polarized, with the degree of the polarizatio
We report on a detailed spectral characterization of the non-thermal X-ray emission for a large sample of gamma-ray pulsars in the second Fermi-LAT catalogue. We outline the criteria adopted for the selection of our sample, its completeness, and crit
We report the discovery of non-thermal pulsed X-ray/soft gamma-ray emission up to about 150 keV from the anomalous X-ray pulsar AXP 1E 1841-045 located near the centre of supernova remnant Kes 73 using RXTE PCA and HEXTE data. The morphology of the d
The origin of the iron fluorescent line at 6.4 keV from an extended region surrounding the Arches cluster is debated and the non-variability of this emission up to 2009 has favored the low-energy cosmic-ray origin over a possible irradiation by hard