ﻻ يوجد ملخص باللغة العربية
A combined interpretation of the CALET $e^+, +, e^-$ spectrum up to 3 TeV and the AMS-02 positron spectrum up to 500 GeV was performed and the results are discussed. To parametrize the background electron flux, we assume a smoothly broken power-law spectrum with an exponential cut-off for electrons and fit this parametrization to the measurements, with either a pulsar or 3-body decay of fermionic Dark Matter as the extra electron-positron pair source responsible for the positron excess. We found that depending on the parameters for the background, both Dark Matter decay and the pulsar model can explain the combined measurements. While the Dark Matter decay scenario is constrained by the Fermi-LAT $gamma$-ray measurement, we show that 3-body decay of a 800 GeV Dark Matter can be compatible with the $gamma$-ray flux measurement. We discuss the capability of CALET to discern decaying Dark Matter models from a generic pulsar source scenario, based on simulated data for five years of data-taking.
We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes of Volcan Sierra N
First results of a cosmic-ray electron + positron spectrum, from 10 GeV to 3 TeV, is presented based upon observations with the CALET instrument on the ISS starting in October, 2015. Nearly a half million electron + positron events are included in th
The ARGO-YBJ experiment is a full coverage air shower detector operated at the Yangbajing International Cosmic Ray Observatory. The detector has been in stable data taking in its full configuration since November 2007 to February 2013. The high altit
In this paper, we present the analysis and results of a direct measurement of the cosmic-ray proton spectrum with the CALET instrument onboard the International Space Station, including the detailed assessment of systematic uncertainties. The observa
We present a precise measurement of the combined electron plus positron flux from 0.5 GeV to 1 TeV, based on the analysis of the data collected by the Alpha Magnetic Spectrometer during the first 30 months of operations aboard the International Space