ترغب بنشر مسار تعليمي؟ اضغط هنا

Extra-planar X-ray emission from disc-wide outflows in spiral galaxies

77   0   0.0 ( 0 )
 نشر من قبل Aditi Vijayan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effects of mass and energy injection due to OB associations spread across the rotating disc of a Milky Way-type galaxy, with the help of 3D hydrodynamic simulations. We compare the resulting X-ray emission with that produced from the injection of mass and energy from a central region. We find that the predicted X-ray image shows a filamentary structure that arises even in the absence of disc gas inhomogeneity. This structure stems from warm clumps made of disc material being lifted by the injected gas. We show that as much as half of the total X-ray emission comes from regions surrounding warm clumps that are made of a mix of disk and injected gas. This scenario has the potential to explain the origin of the observed extra-planar X-ray emission around star forming galaxies and can be used to understand the observed sublinear relation between the $L_X$ and SFR. We quantify the mass contained in these `bow-shock regions. We also show that the top-most region of the outer shock above the central area emits harder X-rays than the rest. Further, we find that the mass distribution in different temperature ranges is bimodal, peaking at $10^4hbox{-}10^5$ K (in warm clumps) and $10^6hbox{-}10^7$ K (X-ray emitting gas). The mass loading factor is found to decrease with increasing SFR, consistent with previous theoretical estimates and simulations.



قيم البحث

اقرأ أيضاً

94 - Wei Cui 1996
We observed several nearby face-on spiral galaxies with the ROSAT PSPC to study their 0.1-2.0 keV diffuse emission. After the exclusion of resolved discrete sources, there is unresolved X-ray emission in all the galaxies observed. Since this emission is a combination of diffuse emission and a contribution from unresolved point sources, it represents an upper limit to the truly diffuse soft X-ray emission. The derived upper limits on the diffuse emission can be interpreted in terms of upper limits to the average intensity of a putative hot halo. They can also be used to derived limits to the total energy radiated by hot gas in the observed galaxies as a function of its temperature for various assumed absorbing geometries. Beyond the equivalent solar radius (the radius at which the Sun would be in the observed galaxies), the temperature of hot gas radiating more than 30% of the total supernova power in the galaxies must be less than $10^{6.1} K$ if it is located within the disk with an assumed absorbing overburden of $3times 10^{20} cm^{-2}$, or less than $10^{5.9} K$ if it lies in an unabsorbed halo.
We study the diffuse X-ray luminosity ($L_X$) of star forming galaxies using 2-D axisymmetric hydrodynamical simulations and analytical considerations of supernovae (SNe) driven galactic outflows. We find that the mass loading of the outflows, a cruc ial parameter for determining the X-ray luminosity, is constrained by the availability of gas in the central star forming region, and a competition between cooling and expansion. We show that the allowed range of the mass loading factor can explain the observed scaling of $L_X$ with star formation rate (SFR) as $L_X propto$ SFR$^2$ for SFR $gtrsim 1$ M$_odot$yr$^{-1}$, and a flatter relation at low SFRs. We also show that the emission from the hot circumgalactic medium (CGM) in the halo of massive galaxies can explain the sub-linear behaviour of the $L_X-$SFR relation as well as a large scatter in the diffuse X-ray emission for low SFRs ($lesssim$ few M$_odot$yr$^{-1}$). Our results point out that galaxies with small SFRs and large diffuse X-ray luminosities are excellent candidates for detection of the elusive CGM.
178 - Clare Dobbs , Junichi Baba 2014
The majority of astrophysics involves the study of spiral galaxies, and stars and planets within them, but how spiral arms in galaxies form and evolve is still a fundamental problem. Major progress in this field was made primarily in the 1960s, and e arly 1970s, but since then there has been no comprehensive update on the state of the field. In this review, we discuss the progress in theory, and in particular numerical calculations, which unlike in the 1960s and 1970s, are now commonplace, as well as recent observational developments. We set out the current status for different scenarios for spiral arm formation, the nature of the spiral arms they induce, and the consequences for gas dynamics and star formation in different types of spiral galaxies. We argue that, with possible the exception of barred galaxies, spiral arms are transient, recurrent and initiated by swing amplified instabilities in the disc. We suppose that unbarred m = 2 spiral patterns are induced by tidal interactions, and slowly wind up over time. However the mechanism for generating spiral structure does not appear to have significant consequences for star formation in galaxies.
UltraFast Outflows (UFOs), seen as X-ray blueshifted absorption lines in active galactic nuclei (AGNs), are considered to be a key mechanism for AGN feedback. In this scenario, UFO kinetic energy is transferred into the cold and extended molecular ou tflow observed at the mm/sub-mm wavelength, which blows away the gas and suppresses star formation and accretion onto the central black hole (BH). However, the energy transfer between the inner UFO and the outer molecular outflow has not yet fully studied mainly due to the limited sample. In this paper, we performed comparison of their kinetic energy using the mm/sub-mm published data and the X-ray archival data. Among fourteen Seyfert galaxies whose molecular outflows are detected in the IRAM/PdBI data, eight targets are bright enough to perform spectral fitting in X-ray, and we have detected UFO absorption lines in six targets with 90% significance level, using XMM-Newton and Suzaku satellites. The time-averaged UFO kinetic energy was derived from the spectral fitting. As a result, we have found that the energy-transfer rate (kinetic energy ratio of the molecular outflow to the UFO) ranges from $sim7times10^{-3}$ to $sim$1, and has a negative correlation with the BH mass, which shows that the AGN feedback is more efficient in the lower mass BHs. This tendency is consistent with the theoretical prediction that the cooling time scale of the outflowing gas becomes longer than the flow time scale when the BH mass is smaller.
212 - S. Pellegrini 2010
The past decade has seen a large progress in the X-ray investigation of early-type galaxies of the local universe, and first attempts have been made to reach redshifts z>0 for these objects, thanks to the high angular resolution and sensitivity of th e satellites Chandra and XMM-Newton. Major advances have been obtained in our knowledge of the three separate contributors to the X-ray emission, that are the stellar sources, the hot gas and the galactic nucleus. Here a brief outline of the main results is presented, pointing out the questions that remain open, and finally discussing the prospects to solve them with a wide area X-ray survey mission such as WFXT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا