ﻻ يوجد ملخص باللغة العربية
Within a galaxy the stellar mass-to-light ratio $Upsilon_*$ is not constant. Spatially resolved kinematics of nearby early-type galaxies suggest that allowing for a variable initial mass function (IMF) returns significantly larger $Upsilon_*$ gradients than if the IMF is held fixed. If $Upsilon_*$ is greater in the central regions, then ignoring the IMF-driven gradient can overestimate $M_*^{rm dyn}$ by as much as a factor of two for the most massive galaxies, though stellar population estimates $M_*^{rm SP}$ are also affected. Large $Upsilon_*$-gradients have four main consequences: First, $M_*^{rm dyn}$ cannot be estimated independently of stellar population synthesis models. Second, if there is a lower limit to $Upsilon_*$ and gradients are unknown, then requiring $M_*^{rm dyn}=M_*^{rm SP}$ constrains them. Third, if gradients are stronger in more massive galaxies, then $M_*^{rm dyn}$ and $M_*^{rm SP}$ can be brought into agreement, not by shifting $M_*^{rm SP}$ upwards by invoking constant bottom-heavy IMFs, as advocated by a number of recent studies, but by revising $M_*^{rm dyn}$ estimates in the literature downwards. Fourth, accounting for $Upsilon_*$ gradients changes the high-mass slope of the stellar mass function $phi(M_*^{rm dyn})$, and reduces the associated stellar mass density. These conclusions potentially impact estimates of the need for feedback and adiabatic contraction, so our results highlight the importance of measuring $Upsilon_*$ gradients in larger samples.
Spatially resolved kinematics of nearby galaxies has shown that the ratio of dynamical- to stellar population-based estimates of the mass of a galaxy ($M_*^{rm JAM}/M_*$) correlates with $sigma_e$, if $M_*$ is estimated using the same IMF for all gal
We estimate ages, metallicities, $alpha$-element abundance ratios and stellar initial mass functions of elliptical (E) and S0 galaxies from the MaNGA-DR15 survey. We stack spectra and use a variety of single stellar population synthesis models to int
The stellar and neutral hydrogen (HI) mass functions at z~0 are fundamental benchmarks for current models of galaxy evolution. A natural extension of these benchmarks is the two-dimensional distribution of galaxies in the plane spanned by stellar and
We investigate the evolution of stellar population gradients from $z=2$ to $z=0$ in massive galaxies at large radii ($r > 2R_{mathrm{eff}}$) using ten cosmological zoom simulations of halos with $6 times 10^{12} M_{odot} < M_{mathrm{halo}} < 2 times
Mass-to-light versus colour relations (MLCRs), derived from stellar population synthesis models, are widely used to estimate galaxy stellar masses (M$_*$) yet a detailed investigation of their inherent biases and limitations is still lacking. We quan