ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular outflow and feedback in the obscured Quasar XID2028 revealed by ALMA

94   0   0.0 ( 0 )
 نشر من قبل Marcella Brusa
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We imaged with ALMA and ARGOS/LUCI the molecular gas and the dust and stellar continuum in XID2028, an obscured QSO at z=1.593, where the presence of a massive outflow in the ionized gas component traced by the [O III]5007 emission has been resolved up to 10 kpc. This target represents a unique test case to study QSO feedback in action at the peak epoch of AGN-galaxy coevolution. The QSO has been detected in the CO(5-4) transition and in the 1.3mm continuum, at ~30 and ~20 {sigma} significance respectively, with both emissions confined in the central (<4 kpc) radius area. Our analysis suggests the presence of a fast rotating molecular disc (v~400 km/s) on very compact scales, and well inside the galaxy extent seen in the rest-frame optical light (~10 kpc, as inferred from the LUCI data). Adding available measurements in additional two CO transitions, CO(2-1) and CO(3-2), we could derive a total gas mass of ~10$^{10}$ M$_odot$, thanks to a critical assessment of CO excitation and the comparison with Rayleigh-Jeans continuum estimate. This translates into a very low gas fraction (<5%) and depletion time scales of 40-75 Myr, reinforcing the result of atypical gas consumption conditions in XID2028, possibly due to feedback effects on the host galaxy. Finally, we also detect at ~5{sigma} the presence of high velocity CO gas, which we interpret as a signature of galaxy-scale molecular outflow, spatially coincident with the ionised gas outflow. XID2028 represents therefore a unique case where the measurement of total outflowing mass (~500-800 M$_odot$/yr) including the molecular and atomic components, in both the ionised and neutral phases, has been attempted for a high-z QSO.



قيم البحث

اقرأ أيضاً

We present ALMA observations of the inner 1 (1.2 kpc) of the Circinus galaxy, the nearest Seyfert. We target CO (1-0) in the region associated with a well-known multiphase outflow driven by the central active galactic nucleus (AGN). While the geometr y of Circinus and its outflow make disentangling the latter difficult, we see indications of outflowing molecular gas at velocities consistent with the ionized outflow. We constrain the mass of the outflowing molecular gas to be 1.5e5 -5.1e6 solar masses, yielding a molecular outflow rate of 0.35-12.3 solar masses per year. The values within this range are comparable to the star formation rate in Circinus, indicating that the outflow indeed regulates star formation to some degree. The molecular outflow in Circinus is considerably lower in mass and energetics than previously-studied AGN-driven outflows, especially given its high ratio of AGN luminosity to bolometric luminosity. The molecular outflow in Circinus is, however, consistent with some trends put forth in Cicone et al. (2014), including a linear relation between kinetic power and AGN luminosity, as well as its momentum rate vs. bolometric luminosity (although the latter places Circinus among the starburst galaxies in that sample). We detect additional molecular species including CN and C17O.
394 - Jenny E. Greene 2011
SDSS J1356+1026 is a pair of interacting galaxies at redshift z=0.123 that hosts a luminous obscured quasar in its northern nucleus. Here we present two long-slit Magellan LDSS-3 spectra that reveal a pair of symmetric ~10 kpc-size outflows emerging from this nucleus, with observed expansion velocities of ~250 km/s in projection. We present a kinematic model of these outflows and argue that the deprojected physical velocities of expansion are likely ~1000 km/s and that the kinetic energy of the expanding shells is likely 10^44-10^45 erg/s, with an absolute minimum of >10^42 erg/s. Although a radio counterpart is detected at 1.4GHz, it is faint enough that the quasar is considered to be radio-quiet by all standard criteria, and there is no evidence of extended emission due to radio lobes, whether aged or continuously powered by an ongoing jet. We argue that the likely level of star formation is probably insufficient to power the observed energetic outflow and that SDSS J1356+1026 makes a strong case for radio-quiet quasar feedback. In further support of this hypothesis, polarimetric observations show that the direction of quasar illumination is coincident with the direction of the outflow.
103 - Bjorn Emonts 2014
The nuclei of merging galaxies are often deeply buried in dense layers of gas and dust. In these regions, gas outflows driven by starburst and AGN activity are believed to play a crucial role in the evolution of these galaxies. However, to fully unde rstand this process it is essential to resolve the morphology and kinematics of such outflows. Using near-IR integral-field spectroscopy obtained with VLT/SINFONI, we detect a kpc-scale structure of high-velocity molecular hydrogen (H2) gas associated with the deeply buried secondary nucleus of the IR-luminous merger NGC3256. We show that this structure is likely the hot component of a molecular outflow, which is detected also in the cold molecular gas by Sakamoto et al. This outflow, with a molecular gas mass of M(H2)~2x10^7 Msun, is among the first to be spatially resolved in both the hot H2 gas with VLT/SINFONI and the cold CO-emitting gas with ALMA. The hot and cold components share a similar morphology and kinematics, with a hot-to-cold molecular gas mass ratio of ~6x10^-5. The high (~100 pc) resolution at which we map the geometry and velocity structure of the hot outflow reveals a biconical morphology with opening angle ~40 deg and gas spread across a FWZI~1200 km/s. Because this collimated outflow is oriented close to the plane of the sky, the molecular gas may reach maximum intrinsic outflow velocities of ~1800 km/s, with an average mass outflow rate of at least ~20 Msun/yr. By modeling the line-ratios of various near-IR H2 transitions, we show that the H2 gas in the outflow is heated through shocks or X-rays to a temperature of ~1900K. The energy needed to drive the outflow is likely provided by a hidden Compton-thick AGN or by the nuclear starburst. We show that the global kinematics of the molecular outflow in NGC3256 mimic those of CO-outflows that have been observed at low spatial resolution in starburst- and active galaxies.
Stellar feedback plays a significant role in modulating star formation, redistributing metals, and shaping the baryonic and dark structure of galaxies -- however, the efficiency of its energy deposition to the interstellar medium is challenging to co nstrain observationally. Here we leverage HST and ALMA imaging of a molecular gas and dust shell ($M_{H2} sim 2times 10^{5} ~{rm M}_{odot}$) in an outflow from the nuclear star forming ring of the galaxy NGC 3351, to serve as a boundary condition for a dynamical and energetic analysis of the outflowing ionised gas seen in our MUSE TIMER survey. We use texttt{STARBURST99} models and prescriptions for feedback from simulations to demonstrate that the observed star formation energetics can reproduce the ionised and molecular gas dynamics -- provided a dominant component of the momentum injection comes from direct photon pressure from young stars, on top of supernovae, photoionisation heating and stellar winds. The mechanical energy budget from these sources is comparable to low luminosity AGN, suggesting that stellar feedback can be a relevant driver of bulk gas motions in galaxy centres - although here $lesssim 10^{-3}$ of the ionized gas mass is escaping the galaxy. We test several scenarios for the survival/formation of the cold gas in the outflow, including in-situ condensation and cooling. Interestingly, the geometry of the molecular gas shell, observed magnetic field strengths and emission line diagnostics are consistent with a scenario where magnetic field lines aided survival of the dusty ISM as it was initially launched (with mass loading factor $lesssim 1$) from the ring by stellar feedback. This systems unique feedback driven morphology can hopefully serve as a useful litmus test for feedback prescriptions in magnetohydrodynamical galaxy simulations.
173 - M. Brusa , C. Feruglio , G. Cresci 2015
Gas outflows are believed to play a pivotal role in shaping galaxies, as they regulate both star formation and black hole growth. Despite their ubiquitous presence, the origin and the acceleration mechanism of such powerful and extended winds is not yet understood. Direct observations of the cold gas component in objects with detected outflows at other wavelengths are needed to assess the impact of the outflow on the host galaxy interstellar medium (ISM). We observed with the Plateau de Bure Interferometer an obscured quasar at z~1.5, XID2028, for which the presence of an ionised outflow has been unambiguously signalled by NIR spectroscopy. The detection of CO(3-2) emission in this source allows us to infer the molecular gas content and compare it to the ISM mass derived from the dust emission. We then analyze the results in the context of recent insights on scaling relations, which describe the gas content of the overall population of star-forming galaxies at a similar redshifts. The Star formation efficiency (~100) and gas mass (M_gas=2.1-9.5x10^{10} M_sun) inferred from the CO(3-2) line depend on the underlying assumptions on the excitation of the transition and the CO-to-H2 conversion factor. However, the combination of this information and the ISM mass estimated from the dust mass suggests that the ISM/gas content of XID2028 is significantly lower than expected for its observed M$_star$, sSFR and redshift, based on the most up-to-date calibrations (with gas fraction <20% and depletion time scale <340 Myr). Overall, the constraints we obtain from the far infrared and millimeter data suggest that we are observing QSO feedback able to remove the gas from the host
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا