ﻻ يوجد ملخص باللغة العربية
We prove an optimal bound in twelve dimensions for the uncertainty principle of Bourgain, Clozel, and Kahane. Suppose $f colon mathbb{R}^{12} to mathbb{R}$ is an integrable function that is not identically zero. Normalize its Fourier transform $widehat{f}$ by $widehat{f}(xi) = int_{mathbb{R}^d} f(x)e^{-2pi i langle x, xirangle}, dx$, and suppose $widehat{f}$ is real-valued and integrable. We show that if $f(0) le 0$, $widehat{f}(0) le 0$, $f(x) ge 0$ for $|x| ge r_1$, and $widehat{f}(xi) ge 0$ for $|xi| ge r_2$, then $r_1r_2 ge 2$, and this bound is sharp. The construction of a function attaining the bound is based on Viazovskas modular form techniques, and its optimality follows from the existence of the Eisenstein series $E_6$. No sharp bound is known, or even conjectured, in any other dimension. We also develop a connection with the linear programming bound of Cohn and Elkies, which lets us generalize the sign pattern of $f$ and $widehat{f}$ to develop a complementary uncertainty principle. This generalization unites the uncertainty principle with the linear programming bound as aspects of a broader theory.
We examine several currently used techniques for visualizing complex-valued functions applied to modular forms. We plot several examples and study the benefits and limitations of each technique. We then introduce a method of visualization that can ta
We obtain new restrictions on the linear programming bound for sphere packing, by optimizing over spaces of modular forms to produce feasible points in the dual linear program. In contrast to the situation in dimensions 8 and 24, where the linear pro
For every known Hecke eigenform of weight 3 with rational eigenvalues we exhibit a K3 surface over QQ associated to the form. This answers a question asked independently by Mazur and van Straten. The proof builds on a classification of CM forms by the second author.
This paper investigates the relations between modular graph forms, which are generalizations of the modular graph functions that were introduced in earlier papers motivated by the structure of the low energy expansion of genus-one Type II superstring
The cohomology theory known as Tmf, for topological modular forms, is a universal object mapping out to elliptic cohomology theories, and its coefficient ring is closely connected to the classical ring of modular forms. We extend this to a functorial